
On the stiffness characteristics of nonmonolithic
elastic structures. Part I. Theory

H. Parland *, A. Miettinen *

Structural Mechanics, Tampere University of Technology, Box 600, FIN-33101 Tampere, Finland

Received 8 September 1999; received in revised form 30 July 2001

Abstract

The paper analyses the effect of dry joints on the stiffness characteristics of elastic structures. Particular attention is

paid to cases with frictional contact sliding because of the indefiniteness of the solution. For this reason a generalized

friction law is introduced, where also the displacement discontinuities at the joints are subjected to conical restraints.

This law permits a separation of the dissipative component q and an auxiliary nondissipative dilatational component

b of the friction angle u. An analysis based on purely nondissipative friction provides unique solutions and thus a

framework for the estimate of solutions corresponding to dissipative friction. The main emphasis is laid upon as-

sessment of bounds for the stiffness characteristics of structures. This constitutes an elastic counterpart and complement

to an analogous treatment of the stability of rigid body assemblages [Int. J. Solids Struct. 32 (2) (1995) 203]. � 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present paper analyses by variational methods the stiffness characteristics of nonmonolithic elastic
structures with dry joints based on the linear theory of elasticity. This topic provides an intermediate link
between the elastic monolithic structure and the corresponding rigid body assemblage connected by dry
joints (Parland, 1995). If contact sliding with friction occurs at the joints, the solution of the static problem
is not unique. Variational methods provide suitable means to reduce this indeterminateness. The func-
tionals subjected to variation are generally energy-expressions with appropriate modifications. The extrema
of the functionals provide then the variational tools for attainment of the solution of the boundary value
problem. We resort to the fact that by direct methods good approximations of the extreme value of the
functional are much easier attained, than a satisfactory approximation by variational methods of the
complete solution. The mechanical significance of the functionals in question is often fuzzy. Therefore
functional characteristics, the structural significance of which are clearly perceptible, are of special interest.

International Journal of Solids and Structures 39 (2002) 1673–1699

www.elsevier.com/locate/ijsolstr

* Corresponding authors. Fax: +358-3-365-2811.

E-mail address: antero@junior.ce.tut.fi (H. Parland).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (01 )00270-0



Such characteristics are the cone of stability EðP Þ of the loads P for rigid body assemblages, the stiffness
DðP Þ for monolithic elastic structures and the collapse loads Pp for ideally plastic structures. Well known
upper and lower bound principles have been established for DðPÞ (Weber, 1942; Parland, 1951) and Pp
(Feinberg, 1948; Hill, 1950) of monolithic structures.

In order to narrow the range of the indefiniteness induced by friction in nonmonolithic structures, we
introduce a modified friction law where the friction angle u of the dry joints obeys the linear law (Parland,
1995)

u ¼ qþ b; jsj6 jrj tanðqþ bÞ ð1Þ
Here q represents the Coulomb or dissipative friction, whereas b represents the nondissipative or geometric
friction, caused by the resistance to frictionless contact sliding along the steepest slope (tan b) of the as-
perity. This linear law seems, according to tests, to materialize at incipient contact sliding and very low
stress (Schneider, 1976; Hassanzadeh, 1990). Eq. (1) implies that the stress vector p ¼ fr; sgT, as well as the
displacement discontinuity vector c ¼ fcn; ctg

T
at the joints Cml are locally subjected to conical restraints

(Fig. 1).
Problems with purely dissipative friction q 6¼ 0 (here labelled DFA) have been largely investigated but

recent work concerning the analysis with purely geometric friction q ¼ 0, b > 0 (labelled GFA) is scarce––
Parland (1968, 1988), Michalowski and Mroz (1978), Sanchez-Palencia and Suquet (1982). The connection
of GFA and DFA within a common framework provides, due to the unique characteristics of GFA,
bounds to structurally significant stiffness characteristics in DFA. The main purpose of this study is to
expound direct methods for the evaluation of these bounds, without resorting to the complete solution of
the problem.

In order to distinguish vectors in abstract spaces Y, oY from those in the physical space R3 we write only
the latter with an extra bold letter. Thus pðsÞ, uðsÞ 2 R3, but p, u 2 oY .

2. Mechanics of contact with dry joints, conical restraints

We consider an elastic structure resting on a rigid surface C0 and occupying a domain X 
 R3 with
external boundary Ce and contact interfaces Clm. Every Clm has a smooth middle-surface C0

lm with surface
coordinates s ¼ fs1; s2gT, position vectors r0ðsÞ, and continuous periodical corrugations zðsÞ with piecewise
continuous integrable gradient rz (Fig. 1). We assume that in the initial state the position vectors rlðsÞ 2
Clm and rmðsÞ 2 Cml of opposite faces Clm and Cml coincide

rlðsÞ ¼ rmðsÞ ¼ rðsÞ ¼ r0ðsÞ þ zðsÞnðsÞ ð2aÞ

Fig. 1. Interfaces Clm, Cml of dry joint with conforming periodical asperities. Cones of deformation XiðbÞ and cones of friction UðqÞ,
Uð0;bÞ and UðuÞ ¼ Uðq;bÞ.
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where nðsÞ ¼ n0lðsÞ ¼ �n0mðsÞ is the outside normal of C0
lm of part (l) and we assume that the system

ðs1; s2; s3Þ has orthogonal unit basevectors

aa ¼ r0;a; ða ¼ 1; 2Þ; a3 ¼ a1 
 a2 ¼ n; jaaj ¼ 1; a1 � a2 ¼ 0 ð2bÞ

The comma denotes the partial derivative ð�Þ;a ¼ oð�Þ=osa. The length li and the roughness amplitude jzmaxji
of a period DCi 
 Clm are assumed to be small compared with the linear dimensions L of the structure

li ¼ OðdLÞ; jzmaxji ¼ OðdLÞ; d � 1 ð3aÞ

Furthermore we assume that the curvature of C0
lm and of its coordinate curves, respectively, are of order

1=L.

jn;b j ¼ Oð1=LÞ; jaa;bj ¼ Oð1=LÞ ða; b ¼ 1; 2Þ ð3bÞ
The outside normal NlðsÞ of dClm within DCi is, taking into account r;a ¼ ðaa þ z;anþ zn;aÞ, conditions
(3a) and (3b) and grad z ¼ rz ¼ z;aaa

NlðsÞ ¼ ðr;1 
 r;2Þ=jr;1 
 r;2j ffi ðnðsÞ � rzÞ=ð1þ ðrzÞ2Þ1=2 ð4Þ
The inclination tan ttðsÞ ¼ dz=ds of dClm in direction t ¼ dr0=ds, where jtj ¼ 1, and the maximum incli-
nation tan t are defined by

tan ttðsÞ ¼ tðsÞ � rzðsÞ ¼ jrzj cosðrz; tÞ; j tan tðsÞj ¼ jrzj ð5Þ
The continuity of zðsÞ requires that for any pair s, s0 2 DCi there holds

nðs0Þ �NlðsÞ ¼ cos tðsÞ > 0; 8 s0; s 2 DCi ð6Þ
The tangent vector of dClm in direction t is

TlðsÞ ¼ ðtðsÞ þ tan ttðsÞnðsÞÞ cos ttðsÞ; cos ttðsÞ ¼ ð1þ ðtan ttðsÞÞ2Þ�1=2; jTlðsÞj ¼ 1 ð7Þ
We shall assume throughout that the displacements u, the strains eij and the rotations xij are infinitesimal,
so that all the conditions of the classical linear theory of elasticity hold

u ¼ OðdLÞ; eij ¼ OðdÞ; xij ¼ OðdÞ; ui;a ¼ OðdÞ; ðd � 1Þ ð8Þ
The discontinuity of the displacement field across Clm is

½u�mlðsÞ ¼ umðsÞ � ulðsÞ ¼ �½u�lmðsÞ ð9Þ

The vector ½u�ml ¼ cml defines uniquely the deformation of the gap between parts ðlÞ and ðmÞ
cmlðsÞ ¼ ctðsÞ þ cnðsÞnðsÞ; ctðsÞ ¼ ctaðsÞaaðsÞ ð10Þ

where ct represents the sliding along C0
lm and cn the dilatation in the joint.

The impenetrability condition: There is no interpenetration between parts ðmÞ and ðlÞ on Clm. The gap
vector between points of the opposite faces induced by u within a period DCi is

gðs;DsÞ ¼ r0mðsþ DsÞ � r0lðsÞ ¼ gtðs;DsÞ þ gnðs;DsÞnðsÞ ð11aÞ

where r0kðsÞ ¼ rkðsÞ þ ukðsÞ for k ¼ m, l. Using the notation f ðsþ DsÞ � f ðsÞ ¼ Df we obtain from Eqs.
(2a) and (11a) with Drm ¼ rmðsþ DsÞ � rmðsÞ

gðs;DsÞ ¼ Drm þ ½u�ml þ Dum ¼ Dr0 þ Dznþ zDnþ DzDnþ cml þ Dum ð11bÞ

Because of conditions (3a) and (8), neglecting quantities O(d2L), we obtain from Eqs. (11a) and (11b)

gtðs;DsÞ ¼ Dr0 þ ct ð11cÞ
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gnðs;DsÞ ¼ Dzþ cn ð11dÞ
where cmlðsÞ is considered to be constant within DCi because jDumj ¼ Oðd2LÞ. The impenetrability can then
be expressed by the condition that for any s and the corresponding Ds, for which gtðs;DsÞ ¼ 0, the normal
component gnðs;DsÞ is nonnegative

gnðs;DsÞP 0; 8 s 2 DCi and Ds for which Dr0 ¼ �ct ð12Þ
Hence Dz ¼ rz � Dr0 ¼ �rz � ct, because c is infinitesimal. Therefore the impenetrability condition is ex-
pressed by

gnðsÞ ¼ cn �rzðsÞ � ct ¼ cn � jctj tan tcðsÞP 0; 8 s 2 DCi ð13Þ

For a given direction ct condition (13) must be valid for every s 2 DCi, thus

cn P jctj sup
s2DCi

ðtan tcðsÞÞ ¼ jctj tan bc: ð14Þ

where tan bc > 0 is the maximum inclination in direction ct on DCi.
Let all c vectors start from a common origin r0c 2 DC0

i , then

Proposition 1. The set fcg of admissible gap-deformations c in a period DCi 
 Clm is a closed convex cone
X iðbÞ 2 R3, with apex at r0i 2 DC0

i and lateral surface @X i, which is determined by the maximum ascent
tan bc in direction ct.

Proof. XiðbÞ is a closed cone because of Eq. (13). For any fixed s 2 DC0
i , Eq. (13) represents a half-space of

c-vectors bounded by a plane through the origin and parallel to dCðsÞ. The set fcg, that satisfies Eq. (13) for
every s 2 DCi, is therefore the intersection of convex sets and therefore forms a convex cone. Contact sliding
is excluded for any s with tan tcðsÞ < tan bc. �

The stress transference at the joint is determined by the equilibrium condition, the no-tension stress
condition on C0

lm and the friction law. Denoting the stressvector acting on dClm by p
l
lmðsÞ and the vector

acting on dCml by p
m
mlðsÞ, there applies at contact points s, s0 2 DCi

pl
lmðsÞdClmðsÞ ¼ �pm

mlðs0ÞdCmlðs0Þ ð15Þ

where pl
lm, defined in the local system by basevectors NlðsÞ and TlðsÞ, is subjected to the friction law of

Coulomb expressed by the normal stress rl and the shear stress sl on dClmðsÞ
pl

lm ¼ �jrljNl þ slTl; rl 6 0 ð16aÞ

� tan q�l 6 sl=jrlj6 tan qþl ð16bÞ

where the negative lower bound corresponds to reloading on dClm. The corresponding traction plm on
dC0

lm ¼ dC cos t can be expressed by the base vectors aa and n and corresponding stresses r and s

plm ¼ �jrjnþ s; s ¼ saaa; plm ¼ �pml ð17aÞ

Using the relation pl
lmðsÞdClmðsÞ ¼ plmðsÞdC0

lmðsÞ and the Eqs. (4), (5), (7), the friction law (16b), expressed in
the base system faa; ng on C0

lm for a given direction s on dC0
lmðsÞ, renders a generalization of Schneiders

friction law

� tanðq� � tþÞ6 sðsÞ=jrðsÞj6 tanðqþ þ tþÞ61; s 2 dC0
lm ð17bÞ

where tan ts ¼ ðrz � sÞ=jsj and tan qs ¼ j tan qlj cos t= cos ts with cos ts ¼ ð1þ ððrz � sÞ=jsjÞ2Þ�1=2. Eq. (17b)
includes the no-tension condition in DC0

i 
 C0
lm for any plmðsÞ ¼ �pmlðsÞ
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rðsÞ ¼ nðs0Þ � plvðsÞ < 0; 8 s0; s 2 DCi ð18aÞ

Because of Eq. (16b) every pl
lmðsÞ and plmðsÞ on dC0

lm are contained in the cone of dissipative friction
Ulðql; sÞ, that is assumed to be convex. Ulðql; sÞ includes the inside normal �NlðsÞ of dClm and since every
plmðsÞ on DCi satisfies inequality (18a), the sum of all Ulðql; sÞ forms a convex cone (Fig. 1b) in every period
DC0

i with apex at fixed si 2 DC0
i

UiðuÞ ¼
X
k

Ulðql; sÞ; u6 qs þ bs 6 p=2 ð18bÞ

This cone, labelled Uiðq; bÞ, constitutes the greatest set with max uþ ¼ ðqþs þ bþs Þ and minu� ¼
�ðq�s þ b�s Þ

Uiðq; bÞ ¼ fplmðsÞ ¼ �jrðsÞjnðsÞ þ sðsÞtðsÞ;
s 2 DC0

lm; rðsÞ6 0; � tanu�
6 s=jrj6 tanuþ; 8 s 2 DC0

i g ð19Þ

If plm 6¼ 0, the inequality jsj < jrj tanu defines the interior U0
i ðuÞ of UiðuÞ, whereas the corresponding

equality determines the lateral surface oUiðuÞ of UiðuÞ. The inequality cn > jctj tan bc defines the interior
X0
i ðbÞ and the equality cn ¼ jctj tan bc defines the lateral surface oXiðbÞ of XiðbÞ. In the limit when DCi ! 0;

zðsÞ ! 0 the sets of cones XiðbÞ and UiðuÞ are transformed into sets of cones Xðb; sÞ and Uðu; sÞ, re-
spectively, of the same shape in R3 at every point r0ðsÞ of C0

lm.
Because dynamic contact requires geometric contact there applies
Correspondence rule. If plm 2 Uðu; sÞ and cml 2 Xðb; sÞ correspond to contact, then:

(a) nonzero plmðsÞ 2 U0ðu; sÞ implies cmlðsÞ ¼ 0; complete contact,
(b) nonzero cmlðsÞ 2 X0ðb; sÞ implies plmðsÞ ¼ 0; no kinematic and no dynamic contact
(d) at linear contact sliding the nonzero vectors plmðsÞ and cmlðsÞ constitute corresponding generatrices of
@UðsÞ and @XðsÞ respectively. To these vectors plmðsÞ and cmlðsÞ and to any admissible vectors
p00lmðsÞ 2 Uðu; sÞ and c0mlðsÞ 2 Xðb; sÞ there applies the sectional normality rule:

s � ðct=jcnj � c0t=jc0njÞP 0; ct � ðs=jrj � s00=jr00jÞP 0 ð20Þ
Using the notations u00

s ¼ u00; tanu00
c0 ¼ tanu00 cosðs00; c0tÞ there follows from Eq. (20)

tanuc P tanu00
c 8p00lm 2 Uðu; sÞ ð21aÞ

tanuc= tan bc P tanuc0= tan bc0 8c0 2 XðbÞ ð21bÞ

The scalar product of admissible p00lm and c0ml can, according to Eq. (19), be written

p00lmðsÞ � c0vlðsÞ ¼ s00 � c0t � jr00jc0n ¼ jr00kc0tjðjs00=r00j cosðs00; c0tÞ � c0n=jc0tjÞ ð22Þ

Because js00j6 jr00j tanu00; c0n P jc0tj tan b0c0 , we obtain

p00lmðsÞ � c0mlðsÞ6 jr00kc0tjðtanu00
c0 � tan b0c0 Þ ð23Þ

Because of Correspondence rule (d), there holds

sup
c0

plm � c0ml
jrkc0tj

¼ sup
p00

p00lm � cml

jr00kctj
¼
plm � cml

jrkctj
¼ ðtanuc � tan bcÞ ð24aÞ

Thus if plmðsÞ and cmlðsÞ are corresponding vectors, then

plmðsÞ � cmlðsÞ ¼ jrkctjðtanuc � tan bcÞP 0 ð24bÞ
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If ½r�ml ¼ hn, where hP 0, impenetrability requires with cn þ hP jctj tan bc

p00lm � c0ml 6 jr00jðjc0tjðtanu00
c0 � tan bc0 Þ þ hÞ ð25aÞ

plm � cml ¼ jrjðjctjðtanuc � tan bcÞ þ hÞ ð25bÞ

3. General characteristics of nonmonolithic structures

Consider a possible state of equilibrium (PE) with the governing equations for the state of stress frijg
and the loads f ðXÞ and pðCcÞ

rij;i þ fj ¼ 0; rij ¼ rji i; j ¼ 1; 2; 3 in X ð26aÞ

rijni ¼ pj on Ce ð26bÞ

ðrijniÞl ¼ plmj; ðrijniÞm ¼ pmlj on C0
lm;C

0
ml ð27aÞ

plmjðsÞ ¼ �pmljðsÞ on Cc ¼
X

C0
lm ð27bÞ

This possible state is an admissible equilibrium state (AE) if p on Ce satisfies certain nonhomogeneous
loading conditions (Section 4) and the friction condition (19) on Cc ¼

P
C0

lm

pðCcÞ 2 Uðq; b; �Þ; Uðq; b; �Þ ¼ [Uðq; b; �Þ ð27cÞ
A possible kinematic state (PK) satisfies the conditions

eij ¼ 1=2ðui;j þ uj;iÞ ð28aÞ

½u� ¼ umðsÞ � ulðsÞ ¼ cmlðsÞ on Clm ð28bÞ

u0 ¼ 0 on C0 ð28cÞ
This possible state is an admissible kinematic state (AK) if the displacements on Ce satisfy certain non-
homogeneous kinematic conditions and the impenetrability condition (14b) on Cc

cð�Þ 2 X ðb; �Þ; X ðb; �Þ ¼ [Xðb; �Þ ð28dÞ
The symmetric tensor Eijrs and its inverse E�1ijrs connect stresses and strains by the relations

rij ¼ Eijrsers; eij ¼ E�1ijrsrrs ð29Þ

These equations together with the relations (27a)–(28c) provide the means for the solution of the dis-
placement problem.

Considering the possible states PE00 ¼ fp00ðCeÞ; f 00ðXÞ; r00ðXÞ; p00ðCcÞg and PK0 ¼ fu0; e0; c0g we obtain
from the multiplication of Eq. (26a) by u0 and using Gauss–Green’s theoremZ

X
ðr00ij;i þ f 00j Þu0j dX ¼

Z
Ce

r00ijniu
0
j dCþ

X Z
Clm

ðr00ijniÞlu0jl dC
 

þ
Z

Cml

ðr00ijniÞmu0jm dC
!
�
Z

X
r00iju

0
j;i dX

þ
Z

X
f 00j u

0
j dX ¼ 0 ð30Þ

Recalling Eqs. (27a)–(27c) and (28b) and combining opposite traction vectors on Cc we get the virtual work
relation between internal and external work
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Z
X

r00ije
0
ij dXþ

Z
Cc

p00lm � c0ml dC ¼
Z

X
f 00 � u0 dXþ

Z
Ce

p00 � u0 dC ð31Þ

Referring to Romano and Sacco (1985) we introduce on X, Cc ¼
P

C0
lm and Ce inner product spaces and

their dual spaces:

The scalar product and the norm in H are defined by the bilinear form cðr; r00Þ

ðrjr00ÞH ¼ cðr; r00Þ ¼
Z

X
E�1ijrsrijr

00
rs dX ð32aÞ

r00
�� �� ¼ cðr00; r00Þ1=2 ¼ Z

X
E�1ijrsr

00
ijr

00
rs dX

� �1=2

¼ ð2W 00
r Þ

1=2 ð32bÞ

The corresponding quantities in H 0 for kinematically possible eðuÞ, eðu0Þ are defined by the bilinear form
eðeðuÞ; eðu0ÞÞ ¼ aðu; u0Þ

ðeje0ÞH 0 ¼ aðu; u0Þ ¼
Z

X
Eijrseije0rs dX ð33aÞ

e0
�� �� ¼ aðu0; u0Þ ¼ Z

X
Eijrse0ije

0
rs dX

� �1=2

¼ ð2W 0
e Þ

1=2 ð33bÞ

Wr denotes the stress energy and We the strain energy of the structure. The bilinear forms cðr; r00Þ and
aðu; u0Þ are symmetric and positive definite which satisfy Schwarz’s inequalities

cðr00; r00Þ � cðr; rÞP cðr00; rÞ2; aðu0; u0Þ � aðu; uÞP aðu0; uÞ2: ð34Þ
If fr00g 
 PE and fu0g 
 PK there follows from Eqs. (31)–(33b) and Schwarz’s inequalityZ

X
r00ije

0
ij dX ¼ cðr00; rðu0ÞÞ ¼ aðuðr00Þ; u0Þ6 ðcðr00; r00Þ � aðu0; u0ÞÞ1=2 ¼ ð4W 00

r � W 0
e Þ

1=2 ð35Þ

Since the admissible vectors pðsÞ and cðsÞ on DCi constitute convex cones Uðu; sÞ and Xðb; sÞ respec-
tively, the set of admissible functions pð�Þ 2 oH , cð�Þ 2 oH 0 constitute convex cones Uðu; �Þ 
 oH and
X ðb; �Þ 
 oH 0, respectively. The integrals in Eq. (31) can be expressed by dual pairings in H, H and Y, Y ,
respectively, and the work equality (31) can be written as

hr00; e0iH þ hp00; c0ioH ¼ hf 00; u0iY þ hp00; u0ioY ð36aÞ
or

h�rr00; �ee0iH ¼ h�pp00; �uu0iY ð36bÞ

(a) Y the space of int. loads f ðXÞ (a0) Y 0 space including displacements uðXÞ
(b) oY the space of surface loads pðCeÞ on Ce (b0) oY 0 space including surface displacements

uðCeÞ on Ce

(c) H space of stress rijðXÞ (c0) H 0 space including strains eijðXÞ
(d) oH space of joint stresses pðCcÞ including

reactions pl0 on
P

C0
l0

(d0) oH 0 space including joint deformations cðCcÞ
and clm on

P
C0

l0

(e) Y ¼ Y � oY space of force loads
�pp ¼ ff ðXÞ; pðCeÞgT

(e0) Y
0 ¼ Y 0 � oY 0 space incl. displacements

�uu ¼ fuðXÞ; uðCeÞgT
(f) H ¼ H � oH space of internal forces

�rr ¼ frðXÞ; pðCcÞgT
(f 0 ) H

0 ¼ H 0 � oH 0 space incl. deformations
�ee ¼ feðXÞ; cðCcÞgT
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where

hr00; e0iH ¼
Z

X
r00ije

0
ij dX; hp00; c0ioH ¼

Z
Cc

p00lm � c0mldC; hf 00; u0iY ¼
Z

X
f 00 � u0 dX; hp00; u0ioY ¼

Z
Ce

p00 � u0 dC

4. The loading conditions and the stiffness of nonmonolithic structures

The loading conditions are usually expressed by prescribed loads p� on a part C�
p of the external surface

Ce, where u0 is unspecified, and by prescribed nonzero displacements u� on C�
u 
 Ce, where p0 is unspecified.

In this case, for a solution fu; rg with corresponding states fr; pðCcÞg, fu; e; cg, where according to Eqs.
(32a), (32b), (33a) and (33b) hr; ei ¼ 2We ¼ 2Wr, the Eq. (36a) can be written as

2W þ hp; cioH ¼ hf �; uiY þ hp�; u0ioY þ hp0; u�ioY ð37Þ

In contact problems the parts of surfaces, where loads p and displacements u are given, cannot generally be
separated. Thus in the indentation problem of a rigid stamp into an elastic layer the resultant force R and
the gradient of the displacement are simultaneously prescribed. In this case the loading can be expressed
in the spaces oY , Z and their duals oY 0, Z 0 by (Fig. 2)

Bp ¼ P �; B : oY ! Z; C0u ¼ U �; C0 : oY 0 ! Z 0 ð38Þ

where Z and Z 0 are the spaces generated by the scalar field of coordinates Pi and Ui of the functions
pð�Þ 2 oY and uð�Þ 2 oY 0, respectively. B and C0 and their adjoints B0 and C are bounded linear operators
with ranges R(B) and R(C0), respectively. Using the decomposition

p ¼ p� þ p0; ðp�jp0ÞoY ¼ 0; Bp0 ¼ 0; p 2 oY ð39Þ

u ¼ u� þ u0; ðu�ju0ÞoY 0 ¼ 0; C0u0 ¼ 0; u 2 oY 0 ð40Þ

the set fu0g constitutes the nullspace NðC0Þ of C0 and the set fp0g constitutes the null-space NðBÞ of B. The
set fp�g ¼ oY �B is NðBÞ’s orthogonal complement NðBÞ? in oY . Hence oY ¼ oY �B � NðBÞ and analogously
oY 0 ¼ oY 0�C � NðC0Þ. Conditions (39) and (40) represent for fixed P �, U � linear varieties M� and M 0� in oY
and oY 0, respectively, generated by the translated subspaces NðBÞ and NðC0Þ. Because NðBÞ and NðC0Þ are

Fig. 2. Scheme of loadings. (a) Loads p� and displacements u� prescribed. (b) Only loads p� prescribed.
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closed and p� ? NðBÞ, u� ? NðC0Þ, p� and u� represent the perpendiculars from the origin to the translated
NðBÞ and NðC0Þ respectively. Hence, if Bp ¼ P � and C0u ¼ U � on C�, then

M� ¼ p� þ NðBÞ; kp�k ¼ min kpk; M 0� ¼ u� þ NðC0Þ; ku�k ¼ min kuk ð41Þ

Definition. The loading conditions are said to be complementary if p�, u� and p0, u0 on C� satisfy

hp�; u�ioY ¼ 0; hp0; u0ioY ¼ 0 ð42Þ
Complementarity requires that the subsets fp0Cg 
 NðC

0Þ? ¼ CP 0 and fu0Bg 
 NðBÞ
? ¼ B0U 0 of fp0g and

fu0g, respectively (Fig. 2), are orthogonal, fp0Cg ? fu0Bg.
Let u0B 2 NðC

0Þ be the component of u0 orthogonal to NðBÞ, and p0C 2 NðBÞ be the component of p0

orthogonal to NðC0Þ, then there applies (Luenberger, 1968):

Lemma 1. If the loading conditions on C� are complementary ðhp�; u�i@Y ¼ 0; hp0; u0i@Y ¼ 0Þ then:
(a)

fp�g ¼ fBþP �g ¼ @Y �B ; fu�g ¼ fC0þU �g ¼ @YC0� ð43Þ
where Bþ and C0þ are pseudoinverse operators Bþ : ZB ! @Y �B ; C

0þ : Z 0C ! @YC0� with inverses ðBþÞ�1 ¼ B
and ðC0þÞ�1 ¼ C0
(b)

If NðBÞ 6¼ 0; then fu0Bg ¼ fB0U 0g ¼ RðB0Þ;U 0 2 Z 0B ð44aÞ
(c)

If NðC0Þ 6¼ 0 then fp0Cg ¼ fCP 0g ¼ RðCÞ; P 0 2 ZC ð44bÞ
(d) The work on Ce is

hp; ui@Y ¼ hp�; u0Bi@Y þ hp0C; u�i@Y ð44cÞ
(e) If NðC0Þ and NðBÞ are nonempty then BC and C0B0 are null-operators

Proof. Since B : oY �B ! ZB and C0 : oYC0� ! Z 0C are one to one and onto, there is a one to one correspondence
between p� and P � and u� and U �, respectively. Therefore corresponding pseudoinverse operators
Bþ : ZB ! oY �B ; C

0þ : Z 0C ! oYC0� exist. Since oY and oY 0 are inner product spaces, any subspace oYd 
 oY can
be identified with its dual ðoYdÞ0 
 oY 0 and vice versa. Because fp�g ? fp0g 2 NðBÞ and fu�g ?
fu0g 2 NðC0Þ there follows

fp�g 2 oY �B ¼ ðoYBÞ0 ¼ NðBÞ? ¼ RðB0Þ; fu�g 2 oY 0
�

C ¼ oYC ¼ NðC0Þ? ¼ RðCÞ ð45aÞ
The condition hp0; u0ioY ¼ 0 implies hp0; u0BioY ¼ 0, hp0C; u0ioY ¼ 0 and hp0C; u0BioY ¼ 0. Hence

p0C 2 NðC
0Þ? ¼ RðCÞ; u0B 2 NðBÞ

? ¼ RðB0Þ; ð45bÞ
from which follows (b)–(d): hp; uioY ¼ hp� þ p0; u� þ u0ioY ¼ hp�; u0BioY þ hp0C; u�i. Therefore hp0C; u0BioY ¼
hCP 0;B0U 0iZ ¼ hBCP 0;U 0iZ ¼ hP 0;C0B0U 0iZ ¼ 0, from which follows (e). �

The direction of the operators can be reversed for instance C0 : Z 0 ! oY 0 (Appendix A). If B or C0 are
identity operators from oY and oY 0, their nullspaces are empty. On account of Lemma 1, the external work
on Ce can be expressed in spaces Z, Z 0 by

hp; uioY ¼ hp�;B0U 0ioY þ hCP 0; u�ioY ¼ hP �;U 0iZ þ hP 0;U �iZ ð46Þ
If complementarity holds, the work equation (37) for a solution at load ff �; p�; u�g is

H. Parland, A. Miettinen / International Journal of Solids and Structures 39 (2002) 1673–1699 1681



2W þ hp; cioH ¼ hf �; uiY þ hp�; u0BioY þ hp0C; u�ioY ð47aÞ

where u0B and p
0
C are the components of u

0 and p0, orthogonal to any p0 and any u0, respectively. It retains in
these more complicated cases the same form as in Eq. (37). Expressing (47a) in spaces H and Y and using
the notation �mm� ¼ �pp�=k�pp�k we get, if u� ¼ 0,

h�rr; �eeiH ¼ h�pp�; �uuBiY ¼ k�pp�kh�mm�; �uuBiY ; ðk�pp�k2 ¼ kf �k2 þ kp�k2Þ ð47bÞ

This detailed analysis of the loading conditions is unavoidable for the definition of the stiffness charac-
teristics of nonmonolithic structures. In these, the stiffness cannot be defined by flexibility or stiffness
matrices, but must be based on more general methods. Thus the stiffness for the point load P is defined
as the ratio of jPj to the load–displacement Up in the direction of P

D ¼ jPj=Up ¼ jPj2=ðP �UÞ

In the general case with u� ¼ 0 the load perpendicular �pp� 2 Y defines the stiffness by

D ¼ k�pp�k=h�mm�; �uuBiY ¼ k�pp�k2=h�pp�; �uuBiY ; �mm� ¼ �pp�=k�pp�k ð48aÞ

Using Eq. (47b), where the internal work depends on the friction q, b the stiffness can be expressed al-
ternatively by

Drðq; bÞ ¼
k�pp�k2

h�rr; �eeiH
; Deðq; bÞ ¼

h�rr; �eeiH 0
h�mm�; �uuBi2�YY 0

ð48bÞ

because k�pp�k ¼ h�rr; �eeiH=h�mm�; �uuBiY . The minimum norm k�pp�k expresses the load intensity. At given �pp� the
norm k�pp�k in expression (47b) can be replaced by the norm of any component or linear transformation of �pp�.

Proposition 2 (Multiplicity rule). Let us assume that in the initial state of the structure there are no eigen-
stresses r0 and no initial gaps ½r�ð�Þ on the interfaces. If the loading increases proportionally from zero and a
solution fu; rg corresponds to the load ff �; p�; u�g, then a solution fku; krg corresponds to the load
fkf �; kp�; ku�g, where actual contact prevails on unchanged interfaces and the equilibrium remains stable,
if and only if k > 0.

Proof. The stable solutions comprises corresponding AE- and AK-states governed by linear relations and
conical restraints. The effect of sliding on the contact area can be overlooked because of geometrical
linearity with u ¼ OðdLÞ. Hence the ‘‘if ’’ part is obvious. k < 0 is excluded because of the conical re-
straints. �

If the correspondence rule holds, stiffnesses defined by Eq. (48b) are independent of the load intensity k.

5. Characteristics of the solution according to nondissipative friction

In this case the friction angles on the interfaces are q ¼ 0 and u ¼ b. The scalar product of any p00lm 2
Uið0; bÞ and any c0ml ¼ c0nnþ c0t 2 XiðbÞ is according to Eq. (22) and the inequalities ðjs00j=jr00jÞ cosðs00; c0tÞ6
tan bc0 and c0n P jc0tj tan bc0

p00lm � c0ml ¼ r00
		 		 c0t

		 		 s00 � c0t
r00j j c0t
		 		� c0n

c0t
		 		

 !
6 r00
		 		 c0t

		 		 max ð s00
		 		= r00

		 		Þ cosðs00; c0tÞ
 �
�min c0n= c0t

		 		
 �� 

6 0 ð49Þ

Equality holds according to Eq. (24b) only for the corresponding vectors plm, cml
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plmðsÞ � cmlðsÞ ¼ 0 ð50Þ

In the spaces oH and oH 0 the formulae (49) and (50) correspond to the dual pairings

hp00ð�Þ; cð�ÞioH 6 0; hpð�Þ; cð�ÞioH ¼ 0 ð51Þ
From Eqs. (49)–(51) there follows

Lemma 2.

(i) The friction cone Uið0; bÞ is the negative normal cone X�
i ðbÞ of the cone X iðbÞ of admissible gap defor-

mations in DCi : Uið0; bÞ ¼ X�
i ðbÞ 
 R3.

(ii) The corresponding cone Uð0; b; �Þ 
 oH is the negative normal cone X �ðb; �Þ of X ðb; �Þ 
 @H 0.
(iii) Corresponding nonzero vectors pð�Þ and cð�Þ are orthogonal generatrices of @Uð0; b; �Þ and @X ðb; �Þ,
respectively (Correspondence rule d).

Theorem 1. If the friction is nondissipative (u ¼ b), the boundary conditions are complementary and a solution
exists, that corresponds to initial stress r0, initial gaps [r] and external load p�, this solution is unique.

Proof. (a) If at load fp�; u�g there would be two solutions fu1; r1g and fu2; r2g, then their difference
fu2 � u1; r2 � r1g would according to Eq. (38) satisfy the condition

hr2 � r1; e2 � e1iH þ hp2 � p1; c2 � c1ioH ¼ hp2 � p1; u2 � u1ioY ð52aÞ
where piðCeÞ ¼ p�i þ p0i; ui ¼ u�i þ u0i; i ¼ ð1; 2Þ. Therefore, since p�2 � p�1, u�2 � u�1 ¼ 0 and hp0i; u0jioY ¼
0, there applies because of complementarity

hr2 � r1; e2 � e1iH þ hp2 � p1; c2 � c1ioH ¼ hp02 � p01; u02 � u01ioY ¼ 0 ð52bÞ
The first term on the left hand side equals aðu2 � u1; u2 � u1Þ, which is independent of r0, [r] and is positive
definite. The second term is independent of r0 and [r], because c2 � c1 ¼ ð½r� þ c2Þ � ð½r� þ c1Þ. Recalling
Eq. (51) and ½r� þ ci 2 X ðbÞ with hpi; ½r� þ cii ¼ 0 ði ¼ 1; 2Þ, this leads to

ðhp2; ½r� þ c2ioH þ hp1; ½r� þ c1ioH Þ � ðhp1; ½r� þ c2ioH þ hp2; ½r� þ c1ioH ÞP 0 ð53Þ
Hence the left hand side of Eq. (52b) is non-negative and vanishes only if all differences fu2 � u1; r2 � r1g
vanish. On the contrary, noncomplementarity may imply several solutions. �

5.1. Stiffness characteristics

Let u�, [r], r0 ¼ 0 and let W 00
r ðuÞ denote the stress energies of the states fp�; r00; p00ðCcÞ 2 Uðu; �Þg, then

W 00
r ðuÞ, where u ¼ qþ b, includes also energies Wrð0;uÞ of the nondissipative states fu; rg0;u.

Lemma 3. The stress energy W 00
r ðuÞ of a AE-state fp�; r00; p00ðCcÞgu, corresponding to the load p� and the given

friction cone Uðu; �Þ, attains its minimum at a solution fu;rg0;u that exists if and only if this solution corre-
sponds to conical nondissipative friction u ¼ b, q ¼ 0

W 00
r ðuÞPWrð0;uÞ; cð�Þ 2 X ðu; �Þ ¼ U�ðu; �Þ ð54Þ

Proof.

(a) The ‘‘if ’’ part is proved by assuming that the solution fu;rg corresponds to nondissipative friction
u ¼ b. If complementarity holds, hp0; u0i ¼ 0, the work equations for PE-states f0; r00 � r; p00 � pg and
the solution fu; rg can, according to Eqs. (34) and (35), be written
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hr00 � r; ei ¼ cðr00 � r; rÞ ¼ �hp00 � p; cioH P 0 ð55Þ
because hp; cioH ¼ 0, hp00; cioH 6 0. Recalling Schwarz’s inequality we obtain cðr00; r00ÞP cðr; rÞ from
which follows Wrð0;uÞ6W 00

r ðuÞ.
(b) The ‘‘only if ’’ statement is proved by assuming WrðuÞ ¼ minW 00

r ðuÞ, where frg minimizes W 00
r ðuÞ and

simultaneously belongs to a solution of the contact problem at load p�. The original minimization prob-
lem is

find fr; pðCcÞg such that cðr; rÞ6 cðr00; r00Þ with pðCcÞ 2 Uðu; �Þ and fr00g 2 AE ð56Þ
The weak formulation of Eq. (56) is (Ekeland and Temam, 1974)

find fr; pðCcÞg such that cðr00 � r; rÞP 0 with pðCcÞ 2 Uðu; �Þ ð57aÞ
The solution fu; rg comprises a AK-state fu; e; cg, where the constraints on c are unspecified. Because
cðr; r00Þ is symmetric and taking into account Eqs. (35), (55) and (57a) we obtain

cðr00 � r; rÞ ¼ hr00 � r; eiH ¼ �hp00 � p; cioH P 0; 8 p00ð�Þ 2 Uðu; �Þ 
 oH ð57bÞ
If we assume that interface Clm has fixed parts, we can choose such an AE-state fp�; r00ðXÞ; p00ðCcÞg that
p00ðCcÞ ¼ pðCcÞ, except on a measurable set fsg ¼ dC0

lm of a detachable Cc. Eq. (57b) can then be written

ðp00 � pÞ � c6 0 ð58aÞ
Choosing p00 ¼ kp, with k > 1 we get p � c6 0 and with 0 < k < 1 we get p � c P 0. Hence for corresponding
vectors p and c there holds

p � c ¼ 0; p 2 UðuÞ ð58bÞ
and for not corresponding p00 and c0 there holds

p00 � c0 < 0; 8 p00 2 UðuÞ ð58cÞ
The relations (58a)–(58c) can be satisfied only if every cð�Þ is restricted to a cone X ðu; �Þ ¼ U�ðu; �Þ, the
negative normal cone of Uðu; �Þ. But this means that the friction is conically nondissipative. �

The lemma is a generalization of Castigliano’s principle of minimum stress energy and it connects
conical nondissipative friction directly with this principle.

If u�, [r], r0 ¼ 0 the stiffness Dð0; bÞ ¼ k�pp�k=h�mm�; �uui�YY corresponding to a solution fu; rg0;b at load �pp� can,
according to Eqs. (48a) and (48b), be expressed with �mm� ¼ �pp�=k�pp�k alternatively by

Deð0; bÞ ¼
2Weð0; bÞ
h�mm�; �uui2Y

ð59aÞ

or

Drð0;uÞ ¼
k�pp�k2

2Wrð0;uÞ
ð59bÞ

Analogically we introduce the concepts of stiffness D0eðbÞ of varied AK-states fu0; e0; c0ðCcÞgb and stiffness
D00rðuÞ of varied AE-states fr00; p00ðCcÞgu at the same load p�

D0eðbÞ ¼
2W 0

e ðbÞ
h�mm�; �uui2Y

ð59cÞ

D00rðuÞ ¼
k�pp�k2

2W 00
r ðuÞ

ð59dÞ
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The following extremum principles of stiffness are valid for nondissipative friction (q ¼ 0) in the whole
range 06 fb;ug6 p=2 if the structure in the initial state is unstressed (r0 ¼ 0) and at the joints there are
no initial gaps (½r� ¼ 0).

Theorem 2. If the structure is subjected to a load �pp� and the boundary conditions are complementary and with
respect to the displacements homogeneous, then the stiffness

D0eðbÞ ¼
2W 0

e ðbÞ
h�mm�; �uu0i2Y

ð60aÞ

defined for all kinematically admissible states fu0; e0; c0gb, where c0ðCcÞ 2 Xðb; �Þ and h�pp�; �uu0iY > 0, attains an
absolute minimum Dð0; bÞ in the actual the actual nondissipative state fu; rg0;b and the stiffness

D00rðuÞ ¼
k�pp�k2

2W 00
r ðuÞ

ð60bÞ

defined for all admissible equilibrium states fp�; r00; p00gu, where p
00ðCcÞ 2 Uðu; �Þ, attains an absolute maxi-

mum Dð0;uÞ in the actual nondissipative state fu; rg0;u. Thus
min
u0
D0eðbÞ ¼ Dð0; bÞ ð61aÞ

max
r00
D00rðuÞ ¼ Dð0;uÞ ð61bÞ

If u ¼ b there holds:

D00rðbÞ6Dð0; bÞ6D0
eðbÞ ð61cÞ

Proof. The lower bound statement follows immediately from Lemma 2. The upper bound statement follows
applying the work equation (34) to the solution fu; rg0;b and an admissible fu0; e0; c0bg, where c; c0 2 X ðb; �Þ.
Recalling Eq. (58c) and 8 �uu0 ? �pp0 on C�

e , we obtain

hrðuÞ; eðu0ÞiH ¼ aðu; u0Þ ¼ h�pp� þ �pp0; �uu0iY � hpðuÞ; cðu0ÞioH P k�pp�kh�mm�; �uu0iY ð62aÞ

hrðuÞ; eðuÞiH ¼ aðu; uÞ ¼ k�pp�kh�mm�; �uuiY � hpðuÞ; cðuÞioH ¼ k�pp�kh�mm�; �uuiY ð62bÞ

according to Eq. (51). Dividing Eq. (62a) by h�mm�; �uu0iY and Eq. (62b) by h�mm�; �uuiY , subtraction gives
aðu; uÞ=h�mm�; �uui6 aðu; u0Þ=h�mm�; �uu0i. From this and Schwarz’s inequality there follows ðaðu; uÞ=h�mm�; �uuiÞ2 6
ðaðu; u0Þ=h�mm�; �uu0iÞ2 6 ðaðu; uÞ � aðu0; u0ÞÞ=h�mm�; �uu0i2. Dividing by aðu; uÞ and inserting W 0

e ðbÞ and W ð0; bÞ we
obtain condition (61a). �

If p and u on C� are defined in Z ¼ Rn by generalized loads and displacements P � ¼ fP1 . . . PngT,
U 0 ¼ fU1 . . .UngT, the solution satisfies, by Eqs. (46) and (59a)–(59d), the work equation

hP �;U 0iZ ¼ hr; eiH ¼ 2WrðP �Þ ð63aÞ

According to the multiplicity rule every Ui and every oW =oPi are homogeneous first-degree functions of
the Pi, and W ðP Þ is a homogeneous second-degree function of the Pi. Hence

oW =oPi ¼
X
j

ðo2W =oPioPjÞPj; W ¼ 1

2

X
i

PiðoW =oPiÞ ¼
1

2

X
i

X
j

ðo2W =oPioPjÞPiPj ð63bÞ

By varying Pi we obtain from Eq. (63a) diW ¼ hdir; eiH ¼ dPiUi � hdip; cioH . If p 2 oUð0; b; �Þ and pþ
dip 2 Uð0; b; �Þ and because Uð0; b; �Þ is convex, hdip; cioH 6 0. Therefore U 0 is a subgradient of W . If
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all oUð0; b; sÞ on Cc are smooth, then dp � c ¼ 0 because of the correspondence rule. In this case there
holds

oW
oPi

¼ Ui ð64aÞ

oUi
oPj

¼ oUj
oPi

ð64bÞ

These equations are generalizations of Castigliano’s and Maxwell’s rules.
The stiffness vector D ¼ fD1 . . .DngT 2 Z is defined by

Dðq; bÞ ¼ P �D1=2=kP �k ð65aÞ

kDk ¼ D1=2 ð65bÞ
D has the direction of the load P � in Z and defines the stiffness surface F ðD; q; bÞ, which encloses the origin
of D. If the friction is nondissipative, we obtain by substituting Pi ¼ kP �kDi=kDk into Eq. (63b)

1

D
¼ 2W ð0; bÞ

kPk2
¼
X
i

X
j

o2W
oPi oPj

DiDj
D

ð66aÞ

This defines the stiffness surface F ðD; q; bÞ for q ¼ 0, that can be expressed by

F ðD; 0; bÞ ¼
X
i

X
j

o2W
oPi oPj

DiDj � 1 ¼ 0 ð66bÞ

or

2W ðDÞ ¼ 1 ð66cÞ
Because of Eq. (64a) we obtain

Ui ¼
oW ðDÞ
oDi

kP �k
kDk ð67aÞ

X
DiUi > 0 ð67bÞ

The outside normal nFðDÞ of F ðD; 0; bÞ has components niðDÞ ¼ ðoW ðDÞ=oDiÞ= oW ðDÞ=oDik kZ .
Therefore, where F ðDÞ is smooth, we get the normality rule

nF ¼ U=kUk ð68Þ
At a cornerpoint Dc of F ðD; 0;bÞ the U is contained in the normal cone of F ðDc; 0; bÞ.

Let 2W ðD1Þ6 1 and 2W ðD2Þ6 1 and since F ðD; 0; bÞ ¼ 2W ðDÞ � 1, then if 0 < a < 1, we get

ð2W ðaD1 þ ð1� aÞD2ÞÞ1=2 6 að2W ðD1Þ1=2 þ ð1� aÞÞð2W ðD2ÞÞ1=2 6 1 ð69Þ
because ð2W ðDÞÞ1=2 ¼ aðD;DÞ can be regarded as a norm of D in a transformed Z space.

If the structure is monolithic, the terms o2W =oPi oPj are constant elements of a matrix ½Kij�.

The expression

EMðDÞ ¼
XX

KijDiDj � 1 ¼ 0 ð70Þ

represents then the stiffness ellipsoid EM of the monolithic structure with corresponding stiffness vectors
DðMÞ and stiffnesses DðMÞ. The set of loads fPkg, that induces in the nonmonolithic structure the states
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of stress and strain of the monolithic structure, constitutes the cone Ekð0;uÞ of the monolithic kern of
the structure (Fig. 6). Within Ekð0;uÞ complete geometrical contact (c ¼ 0) and maximum dynamic con-
tact ðpðCcÞ 2 U0ðu; �ÞÞ prevail on every detachable surface. Ekð0;uÞ is convex, because if P 1k induces
p1kðCcÞ 2 U0ðu; �Þ and P 2k induces p2kðCcÞ 2 U0ðu; �Þ then p1k þ p2k 2 U0ðu; �Þ, where U0ðu; �Þ is the interior of
Uðu; �Þ that is convex.

From Theorem 1 and formulae (68)–(70) there follows:

Proposition 3.

(i) The stiffness surface F ðD; 0; bÞ is uniquely determined by b and is convex
(ii) The work

P
DiUi is positive,

P
DiUi > 0

(iii) The displacement U is contained in the normal cone fnF g of the stiffness surface F ðD; 0; bÞ
(iv) F ðD; 0; bÞ is enclosed in the stiffness ellipsoid EM of the corresponding monolithic structure. It coincides
with the stiffness ellipsoid EM where the load is within the convex cone of the elastic kern Ekð0; bÞ.

Proposition 4. If the assemblage is detachable, the stiffness surface F ðD; 0; bÞ approaches asymptotically a
generatrix oEð0; bÞ of the cone of stability Eð0; bÞ of the corresponding rigid body assemblage in the neigh-
bourhood of their common origin h. If D ! 0, the normal nF of F ðD; 0; bÞ approaches the normal nE of @Eð0; bÞ
and U approaches oN, where N ¼ E�ð0; bÞ, the normal cone of Eð0; bÞ, represents the cone of detachment.

Proof. If the interfaces Clm separate the structure into detachable parts, a load P c that coincides with a
generatrix oE of the cone Eð0; bÞ induces an unbounded displacement U with zero stiffness D ¼ 0. Ac-
cording to Eqs. (67b)

P
DjUi ¼ jP �j=jDj > 0. This is possible because of the collinearity of nF and U only

if U !1 when D ! 0. But unboundedness of U implies that D ! oEð0; bÞ and U ? oEð0; bÞ in
the neighbourhood of h. On oEð0; bÞP c ? U c 2 oNðbÞ, therefore nE ¼ U c=kU ck ¼ nFð0Þ (see Part II, Sec-
tion 4). �

5.2. Extent of contact and limit state of free contact

If we have a detachable interface Clm with friction, we can distinguish three regions:

(a) The stick-region Ck where pðCkÞ 2 U0ðu;CkÞ and cðCkÞ ¼ 0; proper sticking.
(b) The slip-region Cs where nonzero cðCsÞ 2 oX ðb;CsÞ and corresponds to nonzero pðCsÞ 2 oUðu;CsÞ.
(c) The detachment region Cd where nonzero cðCdÞ 2 X 0ðb;CdÞ corresponds to pðCdÞ ¼ 0.

If, at given load p�, we make a very thin cut C1 from outside that induces nondissipative friction along an
internal surface where originally the normal stress r > 0, this cut will generate a detachment region Cd with
a stress discontinuity at the tip of C1. If further increase of C1 induces compressive stresses r < 0, this may
cause contact sliding in a region DC1 ¼ Cs with a stress discontinuity at the tip oCk of the cut. If there is a
border oCk for the not-cut region Cn, across which the joint traction p changes continuously from
p 2 oUðu; �Þ to the interior U0ðu; �Þ of the friction cone and the gap deformation c from outside approaches
zero, this border oC0

k defines the limit state of unconstrained contact. The position of the moving boundary
oC0

k may be determined by parameters r1 . . . rm such that Cn increases monotonically with ri.

Proposition 5. If at given load p� the friction in the cut interface Cc is nondissipative and the thickness t of the
cut is minute, there holds:

(a) The stiffness Dð0;u; rÞ increases monotonously with the not-cut area Cn (Fig. 3).
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(b) In the limit state of unrestrained contact the stiffness attains a maximum D0ð0; bÞ at values r0i within a
neighbourhood DCk of oC

0
n where pðDCkÞ 2 U0ð0;uÞ

oD
ori

� �
DCk

¼ 0;
o2D
oriorj

� �
DCk

¼ 0; 8 ri; rj 2 DCk ð71aÞ

(c) The generalized displacements Ui attain extreme values in the limit state. This implies

oUi
orj

� �
DCk

¼ 0; 8 Ui; rj; rj 2 DCk ð71bÞ

Proof. (a) Because at given load p� any increase of Cn relaxes the restraints on the state of stress
frðXÞ; pðCcÞg, this can only increase the stiffness or keep it unchanged, according to the maximum prin-
ciple of Theorem 2, from which (a) follows. Because on oCk a continuous transition occurs from
p1ðC1Þ 2 oUð0;uÞ to pðCkÞ 2 U0ð0;uÞ, there is within oCk a region DCk, where an additional cut does not
affect the state of stress and strain. This means that the state of stress and strain and the stiffness, within an

Fig. 3. Beam on Winkler-foundation. Dependence of stiffnesses D, D0e and D
00
r on contact length lk, l0k and l

00
k, respectively.
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additional cut in region DCk, remains unchanged. From this follows the disappearance of the first and
second variations of Dðr1; . . . ; rnÞ on ri 2 DCk and so condition (b) and also the independence of any Ui on
ri 2 DCk, which gives condition (c). �

In the case tanu ¼ 0, or ctðC1Þ ¼ 0, a cut of finite thickness t reduces Cs to zero and the region DCk

shrinks to a narrow band DC0 containing oC0. At the limit boundary oC0 the stiffness Dð0;u; rÞ attains an
inflexion point with respect to ri and the generalized displacements UiðrÞ attain extreme values (Fig. 3).

Example 1. An elastic beam (l) loaded by a point load P and resting on a Winkler-foundation ðmÞ. The
elementary calculations are based on the correspondence rule

cml ¼ um � ul > 0; plm ¼ 0 on Cd; cml ¼ 0; um ¼ ul 6¼ 0; plm ¼ �cul on Ck ¼ lk ð72aÞ

with the loading condition on C� ¼ L (L total length of beam) and the differential equations

P ¼
Z

C�
pdx; plm ¼ �M;xx; ul;xxxx þ 4b4ul ¼ 0; b ¼ ðc=4EJÞ1=4 ð72bÞ

Applying Proposition 5 to the extremum principles of Theorem 2 we obtain according to Fig. 3.

D00rðl
000 Þ ¼ 1:704c=b < Dðl0Þ ¼ 1:838c=b < D0eðl

00 Þ ¼ 1:944c=b ð72cÞ

This elementary example shows, that with very simple approximations, the extrema of D0e and D
00
r provide

acceptable bounds for the stiffness of the limit state (and for this only).

Example 2. Smooth (u ¼ 0) eccentrically loaded rigid beam on halfplane. With notations according to
Fig. 4 and e0 ¼ e� d=2þ d 0=2 the inclination of the beam h and the pressure pðxÞ on the contact area
Ck ¼ d 0 are (Milne-Thomson, 1960; Heinisuo, 1983):

h ¼ 2ð1þ jÞ
lpðd 0Þ2

Pe0 ð72dÞ

pðxÞ ¼ P ð1þ e0x=ðd 0Þ2Þ
pððd 0=2Þ2 � x2Þ1=2

ð72eÞ

Fig. 4. Indentation of elastic half-plane by a rigid rectangular stamp. Relative inclination ratio �hh=P ¼ ð2:66� 3ð1� aÞÞ=a2 at eccen-
tricity e ¼ 0:44d versus contact area ratio a ¼ d 0=d.
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Hence, h attains a maximum at d00 ¼ 2ðd � 2eÞ

hmax ¼
ð1þ jÞP

4lpðd � 2eÞ ð72fÞ

that corresponds to the limit state of free contact with pð�d00=2Þ ¼ 0.

6. Stiffness characteristics of the solution according to dissipative friction (DFA)

In the general case we have contact sliding with friction angles q, b > 0. The stiffness Dðq; bÞ of the
structure depends entirely on the loading history (Fig. 5b). The uniqueness of the DFA-solution can be
established only in special cases (Part II, Appendix B).

If u�, [r], r0 ¼ 0, let fu; rgq;b be a solution corresponding to a proportional loading and friction angles
q; b. The gap work is, recalling Eq. (24b)

hp; cioH ¼ hjrj; jctjðtanuc � tan bcÞioH P 0 ð73Þ

The stiffness Dðq; bÞ can then be expressed, using Eqs. (26a), (26b), (48a) and (48b), either by the corre-
sponding AK-state fu; e; cgq;b as Deðq; bÞ with Weðq; bÞ and �mm� ¼ �pp�=k�pp�k, or by the corresponding AE-state
f�pp�; rðXÞ; pðCcÞgq;b as Drðq; bÞ with Wrðq; bÞ

Deðq; bÞ ¼
2Weðq; bÞ þ hpðuÞ; cioH

hm�; ui2
ð74aÞ

Drðq; bÞ ¼
kp�k2

2Wrðq; bÞ þ hp; cðrÞioH
ð74bÞ

Fig. 5. Elastic frame with frictional bearing. (a) Dependence of stiffness ratio Dð0;uÞ=Dð0; 0Þ (GFA-solution) and bounds of

Dðu; 0Þ=Dð0; 0Þ (DFA-solutions) on the coefficient of friction tanu. (b) Load P versus load-displacement up.
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Because these stiffnesses cannot in general be uniquely determined, we can only give estimates of their upper
and lower bounds. The set fu; e; cgq;b can be considered as a nondissipative varied AK-state fu0; e0; c0gb and
fpðCeÞ; rðXÞ; pðCcÞgq;b as a nondissipative varied AE-state fp�; r00ðXÞ; p00ðCcÞgu. We recall the stiffness ex-
pressions (60a) and (60b) where D0eðbÞ is expressed by fu0; e0; c0gb and D00rðbÞ by fp�; r00ðXÞ; p00ðCcÞgu. Eqs.
(74a) and (74b) and the extremum principles of stiffness (Eqs. (61a) and (61b)) provide then the relations

min
q P 0

Dðq;bÞP inf
u0ðbÞ
D0eðbÞ ¼ Dð0; bÞ

max
qP 0

Dðq;u� qÞ6 sup
r00 ðuÞ

D00rðuÞ ¼ Dð0;uÞ
ð75Þ

Using the inequalities (75) in turn by varying u, q, b we get the following proposition.

Proposition 6. The following sequence of stiffnesses hold for 06q, b6 p=2

Dð0; 0Þ6 maxDðb; 0Þ
minDðb; 0Þ

� �
6Dð0; bÞ6 maxDðq;bÞ

minDðq; bÞ

� �
6Dð0; qþ bÞ6DðMÞ ð76aÞ

These inequalities express that the stiffness at load �pp� increases monotonically with q and b towards the
stiffness DðMÞ of the monolithic structure. At constant total friction angle u ¼ qþ b and load p� there
holds minDðu; 0Þ ¼ infb Dðu� b; bÞ < Dðu� b; bÞ < supD00rðuÞ ¼ Dð0;uÞ. But considering ð2W 0

e ð0ÞÞ
1=2

as
a norm of u0 and using Korn’s and Poincar�ee’s inequalities, we can write

minDðu; 0Þ ¼ inf
u0

W 0
e ð0Þ þ hpðu0Þ; u0i

hm�; u0i2
P inf

u0

W 0
e ð0Þ

hm�; u0i2
¼ sup

u0

hm�; u0i
ku0k

 !�2

¼ ~DDeðu; 0Þ ð76bÞ

with the restraints of Theorem 2 supplemented by the condition jsðu0Þj6 jrðu0Þj tanu. In this way we obtain
wellposed upper and lower bounds for any stiffness Dðu� b; bÞ

~DDeðu; 0Þ < Dðu� b; bÞ < Dð0;uÞ ð76cÞ

These bounds are completely independent of the gap work hp; ci at the joints but determination of the lower
bound ~DDðu; 0Þ is in many cases cumbersome. In these cases we take into consideration also the gap work
hp; ci that provide still closer bounds for Dðq; bÞ. Let fu; rgq;b be a DFA solution for friction angles q, b and
fub; rbg0;b be the GFA-solution for friction angles 0, b and fuf ; rfg0;qþb be the GFA-solution for friction
angles 0, qþ b. Then, if stable equilibrium at load p� is maintained at any friction angle u P b, we obtain
the following bounds for the actual hjrj; jctjioH corresponding to friction angles q; b

hjrf j; jcft jioH 6 hjrj; jctjioH 6 hjrbj; jcbt jioH ð77aÞ

Indeed, the average contact sliding jctj is greatest in state fub; rbg, where resistance to sliding is the least,
and which corresponds to the smallest total friction angle u0 ¼ b. The highest resistance occurs in state
fuf ; rfg with u00 ¼ qþ b. According to the premisses, the average jrj on Clm at the same load p� depends
mainly on cn and is rather independent of u. Therefore if u > b, with hp; cioH ¼ hjrj; jctjðtanuc � tan bcÞioH ,
we conclude

hjrbj; jcbt jðtanucb � tan bcbÞioH P hp; cioH P hjrf j; jcft jðtanucf � tan bcfÞioH P 0 ð77bÞ

where for t ¼ u, b and i ¼ b, f we used the notation tan tci ¼ tan t cosðrz; citÞ. We label the dual pairings
with rf , cf and rb, cb as hpf ; cfiu;b and hpb; cbiu;b, respectively.

A lower bound at given p� for inf Dðq; bÞ expressed by a state fu0; e0; c0gb is obtained using Eqs. (74a) and
(75) and Dðq; bÞ ¼ k�pp�k=h�mm�; �uuiY
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minDðq; bÞ ¼ inf
2Weðq; bÞ þ hp0; c0ioH

h�mm�; �uui2Y

 !
P inf

u0
D0eðbÞ þminD2ðq; bÞ inf

u0

hp0; c0ioH
k�pp�k2

 !
ð78aÞ

where according to Eq. (77b) infhp; cioH P hpf ; cfiu;b ¼ hjrf j; jcft jðtanucf � tan bcfÞioH with ucf ¼ qþ b. In-
troducing the notation Bðu; bÞ ¼ k�pp�k2=hpf ; cfiu;b and recalling the minimum principle of Theorem 2 we
obtain the inequality

minDðq; bÞPDð0; bÞ þ ðminDðq; bÞÞ2=Bðu; bÞ ð78bÞ

The smallest root of the above equality gives a lower bound Dðq; bÞ for minDðq; bÞ.

minDðq; bÞPDiðq; bÞ ¼
2Dð0; bÞ

1þ ð1� 4Dð0; bÞ=Bðu; bÞÞ1=2
ð78cÞ

For greater friction angles q, b better approximations of the lower bound are obtained using work
equations for the solutions fu; rgq;b and fuf ; rfg0;qþb

h�pp�; �uuiY ¼ hr; eiH þ hp; cioH ; h�pp�; �uuiY ¼ hrf ; eiH þ hpf ; cioH ; h�pp�; �uufiY ¼ hrf ; efiH ð79aÞ

From Schwarz’s inequality, with hr; ei ¼ aðu; uÞ, hrf ; ei ¼ aðuf ; uÞ, there follows aðuf ; uÞ2 ¼ ðh�pp�; �uuiY�
hpf ; cioH Þ

2
6 aðuf ; ufÞ � aðu; uÞ ¼ h�pp�; �uufiY ðh�pp�; �uuiY � hp; cioH Þ. Hence Kðp�; uÞ ¼ ðh�pp�; �uuiY Þ

2 � ð2hpf ; cioH
þh�pp�; �uuf iY Þh�pp�; �uuiY þ h�pp�; �uufiY hp; cioH þ ðhpf ; cioH Þ

2
6 0. The greatest h�pp�; �uuiY corresponds to the greatest root

of the equation Kðp�; uÞ ¼ 0

suph�pp�; �uuiY 6 hp�; uiii ¼
h�pp�; �uufiY

2
1

0
@ þ 2

hpf ; cioH
h�pp�; �uufiY

þ 1

 
þ 4hpf � p; cioH

h�pp�; �uufiY

!1=2
1
A ð79bÞ

This inequality is satisfied if hpf ; cioH < 2hpf ; cfiu;b < ðhp; cioH þ hpf ; cfiu;bÞ. Hence

hp�; uiii ¼
h�pp�; �uufiY

2
1

0
@ þ 4

hpf ; cfiu;b
h�pp�; �uufiY

þ 1

 
þ
hpf ; cfiu;b
h�pp�; �uufiY

!1=2
1
A ð79cÞ

Inserting hpf ; cfiu;b and Bðu; bÞ into Eq. (79c) we obtain finally with u ¼ qþ b

minDðq; bÞ > Dii ¼
2Dð0;uÞ

1þ 4Dð0;uÞ=Bðu; bÞ þ ð1þ 4Dð0;uÞ=Bðu; bÞÞ1=2
ð79dÞ

An upper bound for maxDðq; bÞ is established using the GFA-solution fuf ; rfg0;u. From expressions (74b)
and (77b) there follows with u ¼ qþ b

maxDðq; bÞ < k�pp�k2

inf
q>0

2Wrðq;u� qÞ þ inf
q>0

hp; cioH
¼ k�pp�k2

2W ð0;uÞ þ hpf ; cfiu;b
ð80aÞ

because inf hp; ciu;b P hpf ; cfiu;b. Inserting Dð0;uÞ and Bðu; bÞ we obtain

maxDðq; bÞ6Ds ¼
Dð0;uÞ

1þ Dð0;uÞ=Bðu; bÞ ð80bÞ

These estimates depend only on the solu tion fuf ; rfg0;u and satisfy the limit values Di ¼ Dii ¼ Dð0; 0Þ in
frictionless case and Di ¼ Dii ¼ Dð0;uÞ if no dissipative work occurs.
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If instead of the exact values Dð0; bÞ and Dð0;uÞ only their approximations D00rð0;uÞ and D0eð0;uÞ and
respective maxhpf ; cfi00u;b and maxhpf ; cfi0u;b of Eq. (77b) are available then, recalling Eqs. (76c), (79d) and
(80b), the following estimates apply

max

2D00rð0;bÞ
1þð1�4D00rð0;bÞ=B00rðu;bÞÞ1=2

~DDeðu; 0Þ
2D00rð0;uÞ

1þ4D00rð0;uÞ=B00rðu;bÞþð1þ4D00rð0;uÞ=B00rðu;bÞÞ1=2

8>>><
>>>:

9>>>=
>>>;

6Dðq; bÞ6 2D0eð0;uÞ
1þ D0eð0;uÞ=B0eð0;uÞ

ð81aÞ

where

~DDeðu; 0Þ ¼ infu0 ð2W 0
e ðu; 0Þ=h�mm; �uu0i

2Þ; jsðu0Þj6 jrðu0Þj tanu
B0eðu; bÞ ¼ j�pp�j2=hjrfðu0Þj; jc0ft jðtanuc0 � tan bc0 ÞioH
B00rðu; bÞ ¼ j�pp�j2hjr00f j; jcftðr00Þjðtanuc00 � tan bc00 ÞioH

ð81bÞ

Every Dðq; bÞ defines the corresponding stiffness surface F ðD; q; bÞ. This coincides with the stiffness ellipsoid
EM when P 2 Ekðq; bÞ, the cone of the monolithic core (Fig. 6).

Proposition 7. If the cone of the monolithic core Ekðq; bÞ exists, this cone is uniquely determined by the total
friction angle uk ¼ ðqþ bÞk : Ekðq; bÞ ¼ EkðukÞ;Ekðuk; 0Þ ¼ Ekð0;ukÞ.

Fig. 6. Portal frame with inclined frictional bearings. The stiffness vector D has a region (shaded) of indeterminateness outside the cone

Ek, that fades away as D approaches point K 2 oEk.
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Proof. Let the load �pp� induce a state fu; rg of nondissipative friction ðq ¼ 0;uk ¼ bÞ, where at almost all
joints Clm complete contact with pðClmÞ 2 U0ð0;uk; �Þ prevails and in remaining joints Cij transitions of the
pðCijÞ from oUð0;uk; �Þ to U0ð0;uk; �Þ at the edges rmax occur corresponding to unrestrained contact. That
implies according to Proposition 5

dD
du

� �
uk

¼
X
i

oDð0;uÞ
ori

ori
ou

 !
rmax

¼ 0 ð82Þ

This means that further increase of u > uk does not affect Dð0;uÞ ¼ Dð0;ukÞ and Dð0;ukÞ constitutes a
generatrix oEk of cone EkðuÞ. Thus oEk is uniquely determined, because the solution of the nondissipative
problem, if it exists, is unique. It coincides with that of the monolithic structure because cðCkÞ � 0
everywhere if p� 2 EkðuÞ. The generatrix oEk only depends on uk ¼ qk þ bk and is independent of the ratio
qk=bk (Fig. 5). �

Outside EkðuÞ the surfaces F ðD; q; b) are inside F ðD; 0; qþ bÞ. Castigliano’s and Maxwell’s rules (Eqs.
(64a,b)) are not valid outside EkðuÞ, but Proposition 5, concerning the stationarity of stiffness and gen-
eralized displacements with respect to the free boundaries of contact, remain valid because in the limit state
there is a border oC0 within which pðCcÞ ! U0ðuk; �Þ. Propositions 3 and 4 remain valid with some mod-
ifications, because hp; cioH P 0: F ðD; q; bÞ is not necessarily convex and the relations U ¼ knF on F ðD; 0; bÞ
and hP ;Ui ¼ 0 on oEð0; bÞ are to be replaced by hD;Ui > 0 on F ðD; q; bÞ and hP ;Ui > 0 on oEðq; bÞ, re-
spectively.

Example 3. An angle-shaped elastic frame with a frictional bearing is loaded vertically by P (Fig. 5). The
stiffness D ¼ P=up at different friction angles are

u ¼ 0: Dð0; 0Þ ¼
ffiffiffi
2

p
� 3EI

ð1þ cÞa3

q ¼ 0: Dð0;uÞ ¼ ð1þ cÞDð0; 0Þ
ð1� tanuÞ2 þ cð1þ tanuÞ2

b ¼ 0: Dðu; 0Þ ¼ ð1þ cÞDð0; 0Þ
ð1� tanuÞ þ cð1þ tanuÞ ;

~DDeðu; 0Þ ¼
ð1þ cÞ ð1� tanuÞ2 þ cð1þ tanuÞ2

h i
Dð0; 0Þ

ð1� tanuÞ þ cð1þ tanuÞ½ �2

uP uk: DðMÞ ¼ ð1þ cÞ2Dð0; 0Þ=4c; tanuk ¼ 0:933

ð83Þ

where c ¼ 3EJ=2a2EA ¼ 1=28, EA is the compressive and EJ the bending stiffness of the struts. With
Bðu; 0Þ ¼ Dð0; 0Þ=ðð1� cÞ=ð1þ cÞ � tanuÞ tanu, we obtain according to Eqs. (78c), (79d) and (80b) upper
and lower bounds for Dð0;uÞ.

Example 4. A portal frame with a rigid beam, elastic studs and frictional bearings is loaded by Px ¼ R sin a,
Py ¼ R cos a (Fig. 6). If u ¼ 0, the stiffness Dð0; 0Þ ¼ R=UR ¼ 6EI=ð1þ cÞa2 is independent of a. For small
values of a the stiffness surface F ðDÞ coincides with the stiffness ellipse EM with major axes ðDð0; 0ÞÞ1=2 and
ðð1þ 1=cÞDð0; 0ÞÞ1=2, where c ¼ 9EI=EAa2

EM ¼ ðDxÞ2

Dð0; 0Þ þ
cðDyÞ2

ð1þ cÞDð0; 0Þ ¼ 1 ð84Þ
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The stiffness surfaces F ðDÞ corresponding to contact sliding are determined by Dx ¼ sin a
ffiffiffiffi
D

p
and Dy ¼

cos a
ffiffiffiffi
D

p
. The stiffness D ¼ R=UR depends on q, b and a

b ¼ u; q ¼ 0; Dð0;uÞa ¼
Dð0; 0Þ

1� ðcos2 a� sin2 a� ðcos a� sin aÞ2 tan hð1þ tan hÞÞ=ð1þ cÞ
ð85aÞ

b ¼ 0; q ¼ u; Dðu; 0Þa ¼
Dð0; 0Þ

1� cos aðcos a� sin aÞð1þ tan hÞ=ð1þ cÞ ð85bÞ

where h ¼ u� p=4. The stiffness surfaces F ðD; 0;uÞ and F ðD;u; 0Þ are enclosed by EM and by the cone
EðRÞ of stability. They coincide with EM within the cone of the monolithic core Ek.

The indeterminateness of the stiffness vector Dðu; 0Þ outside the cone EkðuÞ and its disappearance at the
limit of transition K ¼ oEk \ EM are clearly perceptible on Figs. 5 and 6.

There are many analogies between the stiffness of elastic nonmonolithic structures and the stability of
rigid body assemblages. If parts of the structures are detachable, the stable loads P � span the interior of the
cone of stability Eðq; bÞ, which is convex and contains the origin. In analogy with the stiffness sequence
(76a) for the cone of stability Eðq; bÞ, the following inclusions hold (Parland, 1995):

Eð0; 0Þ 
 maxEðb; 0Þ
minEðb; 0Þ

� �

 Eð0; bÞ 
 maxEðq; bÞ

minEðq; bÞ

� �

 Eð0; qþ bÞ 
 Eðp=2Þ ð86Þ

where for Eðb; 0Þ and Eðq; bÞ only some bounds can be determined. In this case every surface F ðD; 0; bÞ is
contained in the corresponding cone of stability Eð0; bÞ, and the same applies to F ðD;q; bÞ and Eðq;bÞ,
where oEðq; bÞ constitutes an osculating cone of F ðD; q; bÞ at the origin. The indeterminateness of the cone
of stability expressed by the set of neutral equilibrium Enðq; bÞ increases with the dissipativity q.

0 ¼ Enð0; 0Þ ¼ Enð0; qþ bÞ 
 Enðq; bÞ 
 Enðqþ b; 0Þ ð87aÞ
To this corresponds the extent of indeterminateness ND of the stiffnesses Dðq; bÞ expressed by the sequence
of inequalities

0 ¼ NDð0; 0Þ ¼ NDð0; qþ bÞ6NDðq; bÞ6NDðqþ b; 0Þ ð87bÞ
because at given u ¼ qþ b the range of indefiniteness increases with tanuc � tan bc.

7. Summary and conclusions

The range of Coulomb type friction angles u, that in nonmonolithic structures warrants a unique
solution, is restricted to the singles u ¼ 0 and u ¼ p=2. We extend this range to the whole range ½0; p=2�
introducing a nondissipative geometric friction. Assuming interfaces with conforming piecewise smooth
periodical asperities with maximum inclination tan b, the gap deformation vector cð�Þ ¼ fcn; ctg

T
and the

stressvector pð�Þ ¼ fr; sgT at the interface satisfy at contact sliding (Fig. 1) the impenetrability and friction
conditions

cnð�ÞP jctð�Þj tan bc ð88aÞ

jsð�Þj6 jrð�Þj tan bs; rð�Þ6 0 ð88bÞ
Eqs. (88a) and (88b) restrict cð�Þ and pð�Þ to mutually orthogonal convex cones X ðb; �) and Uð0; b; �Þ,
respectively, where admissible c0ð�Þ, p00ð�Þ and corresponding cð�Þ, pð�Þ satisfy

hp00; c0ioH 6 0; hp; cioH ¼ 0; p00; p 2 Uð0; b; �Þ; c0; c 2 X ðb; �Þ ð89Þ
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The GFA solution fr; ug0;b corresponding to a given loading is unique, provided certain complementary
conditions (Eq. (42)) are satisfied. If initial gaps ½r� and prestress r0 do not occur, all rules of the monolithic
structure concerning energies and their derivatives (Eqs. (64a) and (64b)) remain valid.

If the friction is dissipative with friction angle u ¼ qþ b, where q stands for the dissipative Coulomb
friction (Fig. 1), there holds

cnð�ÞP jctð�Þj tan b ð90aÞ

jsð�Þj6 jrð�Þj tanu; u P b ð90bÞ

pð�Þ and cð�Þ are contained in non-orthogonal convex cones X ðb; �Þ and Uðq; b; �), respectively. The solution
at given load p� is not unique.

The essence of the given loading is expressed by the load perpendicular �pp� with minimum norm kp�k. The
stiffness of the structure Dðq; bÞ corresponding to u ¼ qþ b is defined as the ratio of k�pp�k to the load–
displacement up in direction of �pp�:

(a) If the friction is nondissipative ðq ¼ 0Þ or jsj < jrj tanu ðct ¼ 0Þ and [r], r0 ¼ 0, the stiffness Dð0; bÞ
can, using Clapeyron’s equation, be expressed approximately either by an AK (admissible kinematic) state
fu0; e0; c0g with strain energy W 0

e ðbÞ as D0eðbÞ ¼ 2W 0
e ðbÞ=h�mm�; u0i

2
, or by an AE (admissible equilibrium) state

fr00; p00g with stress energy W 00
r ðuÞ as D00rðuÞ ¼ k�pp�k2=2W 00

r ðuÞ. Now b ¼ u and Theorem 2 provides bounds
for the actual stiffness Dð0; b) at load �pp�

D00rðbÞ6Dð0; bÞ6D0eðbÞ ð91aÞ

(b) If the friction is dissipative and [r], r0 ¼ 0, only at proportional loading a consistent definition of
stiffness is possible by stress and strain energies and the positive dissipative work hp; ciu;b at the joints. In
this case the stiffness Dðq; bÞ can be expressed alternatively by

D0eðq; bÞ ¼
2W 0

e ðbÞ þ hp0; c0ioH
h�mm�; �uui2oY

ð91bÞ

D00rðq; bÞ ¼
k�pp�k2

2W 00
r ðuÞ þ hp00; c00ioH

ð91cÞ

Dðq; bÞ can therefore be considered either as greater than a D0eðbÞ corresponding to a varied AK state
fu0; e0; c0gb or as smaller than a D

00
rðuÞ corresponding to a varied AE state fr00XÞ; p00ðCcÞgu (Eqs. (61a)–(61c)).

Thus, using the unique values of the stiffness Dð0; bÞ for nondissipative friction, we obtain (Eqs. (76a)–
(76c)) in the general case the sequence

Dð0; 0Þ6 ~DDeðu; 0Þ6
maxDðu� b; bÞ
minDðu� b; bÞ

� �
6Dð0;uÞ6Dðp=2Þ ð92Þ

Using the contact sliding ct corresponding to nondissipative friction, closer bounds for the infima and
suprema of the stiffness can be determined (Eq. (81a,b), Fig. 5).

If the boundaries of the contact region at given load are not fixed, the actual boundaries correspond to
stationary values of the stiffness and the concerned displacements (Figs. 3 and 4). If the load is expressed by
n forces Pi the stiffness vector fDðq; bÞg ¼ fPgD1=2ðq; bÞ=jP j determines the stiffness surface F ðD;u� b; bÞ
that is contained in the unique stiffness surface F ðD; 0;uÞ. This is in turn contained in the stiffness ellipsoid
EM of the corresponding monolithic structure. F ðD;u� b; bÞ and F ðD; 0;uÞ coincide with EM within the
cone EkðuÞ of the monolithic core (Fig. 6). This cone with critical uk is uniquely determined by a GFA
solution. If a structure forms an assemblage of detachable parts, the stiffness surface F ðD; q; bÞ is contained
in the corresponding rigid body cone of stability Eðq;bÞ, that constitutes an osculating cone of F ðD; q; bÞ at
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their common apex h. In this case to relation (76a) concerning Dðq; bÞ and the range of its indetermi-
nateness there corresponds a quite analogous relation (86) for Eðq; bÞ.
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Appendix A. Exchange of boundary conditions of the indentation problem of an elastic strip loaded by a rigid

wedge

Loading surface Ce; jxj6 b=2; y ¼ 0; p ¼ f0; pygT; u ¼ fux; uygT; pðx; 0Þ 2 oY ; uðx; 0Þ 2 oY 0; Z ¼ fP1; P2g;
Z 0 ¼ fU1;U2g; u ¼ 0 (Fig. 7). Loading conditions pðx; 0Þ ¼ p� þ p0; uðx; 0Þ ¼ u� þ u0.

Nonlinear problem (Fig. 7a)
Initial gap ½r�y ¼ h ¼ jxjU �

2 > 0; ½r�x ¼ 0 Rigid wedge. One degree of freedom: translation U 0
1 in direction

y
Loading conditions:Z

Ce

py dx ¼ P �1 ; u�y ¼ jxjU �
2 ðA:1aÞ

Operators B : oY ! Z; C0 : Z 0 ! oY 0

Prescribed:

Bp ¼
Z

Ce

py dx ¼ P �1 2 Z ðA:2aÞ

Z
Ce

p0y dx ¼ 0 ðA:3aÞ

C0U ¼ 0
jxjU �

2

� �
2 oY 0 ðA:4aÞ

Fig. 7. Scheme of loads and displacements on the loaded surface C�. (a) Generalized loads P �1 , U
�
2 prescribed. (b) P �1 and P �2 ¼ rP �1

prescribed.
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Complementarity requires:

oY 0
C 
 NðBÞ; Z 0B 
 NðC

0Þ ðFig: 2Þ;Z
fp�gTfu�gdx ¼ 0;

Z
fp0gTfu0gdx ¼ 0

Hence

p� ¼ 0
P �1 =b

� �
; u� ¼ 0

ðjxjÞ � b=4ÞU �
2

� �
ðA:5aÞ

ux
uy

� �
¼ 0 0

1 jxj � b=4

� �
U 0

1

U �
2

� �
þ u0x

0

� �
ðA:6aÞ

p0C ¼
0

ðjxj � b=4ÞP 02

� �
ðA:7aÞ

px
py

� �
¼ 0 0

1=b jxj � b=4

� �
P �1
P 02

� �
þ 0

p0y

� �
ðA:8aÞ

Semilinear problem (Fig. 7b)
Initial gap ½r�y ¼ 0 Wedge split into two rigid beams connected by a hinge. Two degrees of freedom:
translation U 0

1 and rotation U 0
2

Loading conditions:Z
Ce

py dx ¼ P �1 ;
Z

Ce

py jxjdx ¼ P �2 ¼ 2ðrP �1 =2Þ ðA:1bÞ

Operators B : oY ! Z
Prescribed:

Bp ¼
Z

Ce

0 1
0 jxj

� �
px
py

� �
dx ¼ P �1

P �2

� �
2 ZB ðA:2bÞ

Z
Ce

0 1
0 jxj

� �
p0x
p0y

� �
dx ¼

R
p0y dx ¼ 0R
p0y jxjdx ¼ 0

� �
ðA:3bÞ

C0 ¼ 0 ðA:4bÞ
Complementarity requires:

u� ¼ 0; U 0 2 Z 0B; p� 2 oY �B ; p
0 2 NðBÞ;Z

fp0gTfu0gdx ¼ 0

Hence

p� ¼
0

12
b2

b
3
� jxj


 �
P �1 þ

4jxj
b � 1

! "
P �2

! "� �
ðA:5bÞ

ux
uy

� �
¼ 0 0

1 jxj

� �
U 0

1

�U 0
2

� �
þ u0x

0

� �
ðA:6bÞ
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u0B ¼
0 0
1 jxj

� �
U 0

1

�U 0
2

� �
ðA:7bÞ

px
py

� �
¼ 12

b2
0 0

b=3� jxj 4jxj=b� 1

� �
P �1
P �2

� �
þ 0

p0y

� �
ðA:8bÞ

In both cases hp0C; u0i ¼ 0, hp0; u0Bi ¼ 0 as well as hp0; u0i ¼ 0.

References

Ekeland, I., Temam, R., 1974. Analyse convexe et probl�eemes variationnels. In: Dunod. Gauthier-Villars, Paris.
Hassanzadeh, M., 1990. Determination of fracture zone properties in mixed mode. Eng. Fract. Mech. 35 (4/5), 845–853.

Feinberg, S.M., 1948. Printsip predelnoi naprezennosti. Prikl. Matem. Mehanika 12, 63–67.

Heinisuo, M., 1983. Kosketusprobleeman analyyttinen ratkaiseminen (in Finnish). Licentiate thesis, Tampere University of

Technology.

Hill, R., 1950. The Mathematical Theory of Plasticity. Clarendon Press, Oxford.

Luenberger, D., 1968. Optimization by Vector Space Methods. Wiley, New York.

Michalowski, R., Mroz, Z., 1978. Associated and non associated sliding rules in contact friction problem. Arch. Mech. 30, 250–276.

Milne-Thomson, L.M., 1960. Plane Elastic Systems. Springer, Berlin.

Parland, H., 1951. Om elasticitetsteorins variationsprinciper. Svenska tekniska vetenskapsakademien i Finland. Acta 1951.

Parland, H., 1968. On the Stiffness of Non-monolithic Structures. State Institute of technical Research Finland Publ. 23, Helsinki.

Parland, H., 1988. Friction law, stiffness and stability of nonmonolithic structures. In: Ranta, M. (Ed.), Proceedings of the Third

Finnish Mechanics Days. Helsinki University of Technology, pp. 317–328.

Parland, H., 1995. Stability of rigid-body assemblages with dilatant interfacial contact sliding. Int. J. Solids Struct. 32 (2), 203–234.

Romano, G., Sacco, E., 1985. A general theory of convex elastostatic problems. In: Proceedings of the International Conference on

Nonlinear Mechanics 1985, Shanghai. Science Press, Beijing, pp. 169–174.

Sanchez-Palencia, E., Suquet, P., 1982. Friction and homogenization of boundary. In: Free Boundary Problems: Theory and

Applications, vol. II. Pitman, London.

Schneider, H.J., 1976. The friction and deformation behaviour of rock joints. Rock Mech. 8, 169–184.

Weber, C., 1942. Eingrenzung von Verschiebungen mit Hilfe der Minimals€aatze. Z. Angew. Math. Mech. 3, 126–136.

H. Parland, A. Miettinen / International Journal of Solids and Structures 39 (2002) 1673–1699 1699


