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Abstract

The paper analyses the effect of dry joints on the stiffness characteristics of elastic structures. Particular attention is
paid to cases with frictional contact sliding because of the indefiniteness of the solution. For this reason a generalized
friction law is introduced, where also the displacement discontinuities at the joints are subjected to conical restraints.
This law permits a separation of the dissipative component p and an auxiliary nondissipative dilatational component
p of the friction angle ¢. An analysis based on purely nondissipative friction provides unique solutions and thus a
framework for the estimate of solutions corresponding to dissipative friction. The main emphasis is laid upon as-
sessment of bounds for the stiffness characteristics of structures. This constitutes an elastic counterpart and complement
to an analogous treatment of the stability of rigid body assemblages [Int. J. Solids Struct. 32 (2) (1995) 203]. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present paper analyses by variational methods the stiffness characteristics of nonmonolithic elastic
structures with dry joints based on the linear theory of elasticity. This topic provides an intermediate link
between the elastic monolithic structure and the corresponding rigid body assemblage connected by dry
joints (Parland, 1995). If contact sliding with friction occurs at the joints, the solution of the static problem
is not unique. Variational methods provide suitable means to reduce this indeterminateness. The func-
tionals subjected to variation are generally energy-expressions with appropriate modifications. The extrema
of the functionals provide then the variational tools for attainment of the solution of the boundary value
problem. We resort to the fact that by direct methods good approximations of the extreme value of the
functional are much easier attained, than a satisfactory approximation by variational methods of the
complete solution. The mechanical significance of the functionals in question is often fuzzy. Therefore
functional characteristics, the structural significance of which are clearly perceptible, are of special interest.
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Such characteristics are the cone of stability E(P) of the loads P for rigid body assemblages, the stiffness
D(P) for monolithic elastic structures and the collapse loads P, for ideally plastic structures. Well known
upper and lower bound principles have been established for D(P) (Weber, 1942; Parland, 1951) and P,
(Feinberg, 1948; Hill, 1950) of monolithic structures.

In order to narrow the range of the indefiniteness induced by friction in nonmonolithic structures, we
introduce a modified friction law where the friction angle ¢ of the dry joints obeys the linear law (Parland,
1995)

p=p+p |tl<|o[tan(p + B) (1)

Here p represents the Coulomb or dissipative friction, whereas f§ represents the nondissipative or geometric
friction, caused by the resistance to frictionless contact sliding along the steepest slope (tan f§) of the as-
perity. This linear law seems, according to tests, to materialize at incipient contact sliding and very low
stress (Schneider, 1976; Hassanzadeh, 1990). Eq. (1) implies that the stress vector p = {g, t}T, as well as the
displacement discontinuity vector y = {y,, yl}T at the joints I',, are locally subjected to conical restraints
(Fig. 1).

Problems with purely dissipative friction p # 0 (here labelled DFA) have been largely investigated but
recent work concerning the analysis with purely geometric friction p = 0, # > 0 (labelled GFA) is scarce—
Parland (1968, 1988), Michalowski and Mroz (1978), Sanchez-Palencia and Suquet (1982). The connection
of GFA and DFA within a common framework provides, due to the unique characteristics of GFA,
bounds to structurally significant stiffness characteristics in DFA. The main purpose of this study is to
expound direct methods for the evaluation of these bounds, without resorting to the complete solution of
the problem.

In order to distinguish vectors in abstract spaces Y, 0Y from those in the physical space R? we write only
the latter with an extra bold letter. Thus p(s), u(s) € R®, but p, u € 0Y.

2. Mechanics of contact with dry joints, conical restraints

We consider an elastic structure resting on a rigid surface I'; and occupying a domain Q C R? with
external boundary I'. and contact interfaces I',,. Every I',, has a smooth middle-surface I’ with surface
coordinates s = {s',s2}", position vectors r’(s), and continuous periodical corrugations z(s) with piecewise
continuous integrable gradient Vz (Fig. 1). We assume that in the initial state the position vectors r,(s) €
I, and r,(s) € Iy, of opposite faces I',, and I',, coincide

ru(s) = r(s) = r(s) =1'(s) + z(s)n(s) (2a)

Fig. 1. Interfaces I'y,, I'y, of dry joint with conforming periodical asperities. Cones of deformation X;(f) and cones of friction @(p),
2(0, ) and (¢) = (p, ).
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where n(s) = n)(s) = —n)(s) is the outside normal of I’ 2‘, of part (1) and we assume that the system
(s',5%,5%) has orthogonal unit basevectors

a,=1r); (x=12); ay=a; xa=mn |a=1; a-a,=0 (2b)

The comma denotes the partial derivative (-) , = 9(-)/0s,. The length /; and the roughness amplitude |zyx|
of a period AI'; C I'y, are assumed to be small compared with the linear dimensions L of the structure

l;=0(0L); |zmax|, = O(SL); ok 1 (3a)

i

Furthermore we assume that the curvature of I" 2‘, and of its coordinate curves, respectively, are of order
1/L.

g | =O(/L);  agy| =O(1/L) (% f=1,2) (3b)

The outside normal N, (s) of dI',, within AT’ is, taking into account r, = (a, +z,n+ zn,), conditions
(3a) and (3b) and grad z = Vz =z ,,a,

Nu(s) = (r xx2)/[ry x 1o 2 (n(s) = V2)/(1 + (V2)) 2 )

The inclination tanv,(s) = dz/ds of dI',, in direction t = dr’/ds, where |t = 1, and the maximum incli-
nation tanv are defined by

tan v (s) = t(s) - Vz(s) = |[Vz|cos(Vz,t); |tanv(s)| = |Vz] (5)
The continuity of z(s) requires that for any pair s, s' € ATI'; there holds

n(s’) - Nu(s) =cosv(s) > 0; Vs seAl; (6)
The tangent vector of dI'y, in direction t is

T,(s) = (t(s) + tan v, (s)n(s)) cos v (s); cosv(s) = (1 + (tanv,(s))*) "% |T,(s)| =1 (7)

We shall assume throughout that the displacements u, the strains ¢; and the rotations w;; are infinitesimal,
so that all the conditions of the classical linear theory of elasticity hold

u=0(L); & =0(9); w;=0(9); uj, =0(); (K1) (8)
The discontinuity of the displacement field across I',, is

[u],, (s) = uy(s) —wy(s) = —[u],,(s) ©)
The vector [u],, = y,, defines uniquely the deformation of the gap between parts (1) and (v)

Vu(8) = ¥i(8) +7a()n(s); - 7i(s) = 7 (5)n(s) (10)

where y, represents the sliding along I’ 2v and v, the dilatation in the joint.
The impenetrability condition: There is no interpenetration between parts (v) and (u) on I',,. The gap
vector between points of the opposite faces induced by u within a period ATl’; is

g(s, As) = r,(s + As) —r,(s) = g/(5,As) + gu(s, As)n(s) (11a)
where r/(s) =r1,(s) + w,(s) for 2 =v, p. Using the notation f(s + As) — f(s) = Af we obtain from Eqgs.
(2a) and (11a) with Ar, = r,(s + As) —r,(s)
g(s,As) = Ar, + [u],, + Au, = Ar’ + Azn + zAn + AzAn + v, + Au, (11b)

Because of conditions (3a) and (8), neglecting quantities O(6°L), we obtain from Egs. (11a) and (11b)
g, (s,As) = Ar’ +y, (11c)
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gn(s,As) = Az 4, (11d)

where v, (s) is considered to be constant within ATI'; because |Au,| = O(4°L). The impenetrability can then
be expressed by the condition that for any s and the corresponding As, for which g, (s, As) = 0, the normal
component g, (s, As) is nonnegative

gu(s,As) = 0; Vs c Al and As for which Ar® = —y, (12)
Hence Az = Vz- At = —Vz - y,, because v is infinitesimal. Therefore the impenetrability condition is ex-
pressed by

gn(s) = pn — Vz(8) - vy = 7o — 7| tanv,(s) = 0; Vs € AT; (13)
For a given direction vy, condition (13) must be valid for every s € AI';, thus

Vo 2 I“{tlsselilgi(tan v(s)) = |v,/ tan B,. (14)

where tan 8, > 0 is the maximum inclination in direction y, on AT’
Let all y vectors start from a common origin r’ € AI" ?, then

Proposition 1. The set {y} of admissible gap-deformations y in a period AT'; C T, is a closed convex cone
X:(B) € R, with apex at ¥’ € AT and lateral surface 0X;, which is determined by the maximum ascent
tan f8, in direction y,.

Proof. X;(p) is a closed cone because of Eq. (13). For any fixed s € AI' ?, Eq. (13) represents a half-space of
y-vectors bounded by a plane through the origin and parallel to dI'(s). The set {7}, that satisfies Eq. (13) for
every s € Al';, is therefore the intersection of convex sets and therefore forms a convex cone. Contact sliding
is excluded for any s with tanv,(s) < tanf,. O

The stress transference at the joint is determined by the equilibrium condition, the no-tension stress
condition on I' 2», and the friction law. Denoting the stressvector acting on dI',, by pﬁ‘,(s) and the vector
acting on dI',, by p},(s), there applies at contact points s, s' € AI';

Pﬁv(s) dl,(s) = _p:ip(sl) d]—'w(sl) (15)

where p/;, defined in the local system by basevectors N, (s) and T,(s), is subjected to the friction law of
Coulomb expressed by the normal stress o, and the shear stress 1, on dI,,(s)

PZV = —loNy + 7, Tys 0,<0 (16a)

—tanp, <t7,/|o,| < tanp, (16b)
where the negative lower bound corresponds to reloading on dI',,. The corresponding traction p,, on
dr 2‘, = dI'cosv can be expressed by the base vectors a, and n and corresponding stresses ¢ and t©

P, =—lon+1 t=r1a,; p,=-p, (17a)

Using the relation pf; (s)dI ', (s) = p,,(s)dl’ 2‘, (s) and the Egs. (4), (5), (7), the friction law (16b), expressed in
the base system {a,,n} on I'), for a given direction t on dI'),(s), renders a generalization of Schneiders
friction law

—tan(p~ —o*) <1(s)/]o(s)] < tan(pt +v7) < oc0; s € dl"ﬁ‘, (17b)

where tanv, = (Vz-1)/|t| and tan p, = |tan p,| cosv/ cos v, with cosv, = (1 + ((Vz- ©)/|t))?) 2. Eq. (17b)
includes the no-tension condition in AI'Y C T’ 2‘, for any p,,(s) = —p,,(s)
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a(s) =n(s') -pu(s) <0; Vs',s €Al (18a)

Because of Eq. (16b) every pi (s) and p,(s) on dI 2‘, are contained in the cone of dissipative friction
®,(p,,s), that is assumed to be convex. ®,(p,,, s) includes the inside normal —N,(s) of dI',, and since every
p,,(s) on AT satisfies inequality (18a), the sum of all ®,(p,, s) forms a convex cone (Fig. 1b) in every period
AT with apex at fixed s; € AI'?

Di(p) =Y ®up,s); @<p,+ P <m/2 (18b)
k

This cone, labelled ®;(p,f), constitutes the greatest set with max ¢ = (p/ + B7) and ming~ =
—(pz +5,)

®@;(p, ) = {p(s) = —[a(s)In(s) + z(s)t(s);
s€Ar’; a(s)<0; —tang <t/|o|< tano™; Vs € ATV} (19)

uv?

If p,, # 0, the inequality |t| < |o|tan ¢ defines the interior ®)(¢p) of ®,(¢p), whereas the corresponding
equality determines the lateral surface 0®;(¢) of ®;(¢). The inequality y, > |y,|tan f8, defines the interior
X?(p) and the equality y, = |y,| tan B, defines the lateral surface 0X;(f) of X;(f). In the limit when AT'; — 0;
z(s) — 0 the sets of cones X;(f) and ®;(¢p) are transformed into sets of cones X(f,s) and ®(¢p,s), re-
spectively, of the same shape in R® at every point 1(s) of I ?w.
Because dynamic contact requires geometric contact there applies

Correspondence rule. If p,, € ®(¢,s) and y,, € X(B,s) correspond to contact, then:

(o) nonzero p,,(s) € D’ (¢, s) implies 7,.(s) = 0; complete contact,

(B) nonzero y,,(s) € X°(B,s) implies Pu(s) = 0; no kinematic and no dynamic contact

(0) at linear contact sliding the nonzero vectors p,,(s) and y,,(s) constitute corresponding generatrices of
O®(s) and 0X(s) respectively. To these vectors p,(s) and v,,(s) and to any admissible vectors
P(s) € @(o,s) and v, (s) € X(B,s) there applies the sectional normality rule:

T (/I =1/ = 05 v (3/]e] = 7"/]6"]) = 0 (20)
Using the notations ¢} = ¢"; tan @7, = tan ¢" cos(t”, y;) there follows from Eq. (20)

tang, > tang Vp, € ®(e,s) (21a)

tang,/tanf, > tang,/tanf, Vy' € X(p) (21b)
The scalar product of admissible p, and y;, can, according to Eq. (19), be written

P (8) - You(s) =" v =[0Iy, = 10" [Ivil (1" /6" cos (", vi) — 24/ Ivil) (22)
Because |t'| < |o”|tan ¢”; v, = |y;| tan ﬁf/, we obtain

P, (5) - 1. (s) < o[l v;|(tan @), — tan ) (23)
Because of Correspondence rule (d), there holds

sup P Ty =su P T T LT (tan ¢, — tan B.) (24a)

v ol lo"llvd alivd / /

Thus if p,,(s) and y,,(s) are corresponding vectors, then

puv(s) : Yvu(s) = |O-H’Yl|(tan (pv — tan ﬁ}) = 0 (24b)



1678 H. Parland, A. Miettinen | International Journal of Solids and Structures 39 (2002) 1673—1699

If [r],, = /n, where & > 0, impenetrability requires with y, + /4 > |y,| tan f,
P, - Yo, <|o"|(|vi|(tan @} — tan ) + h) (25a)

P Vo = lol(Ivl(tan @, — tan ) + h) (25b)

3. General characteristics of nonmonolithic structures

Consider a possible state of equilibrium (PE) with the governing equations for the state of stress {o;}
and the loads f(Q) and p(I.)

i +/=0; o;=0y i,j=1,2,3in Q (26a)
oyn;=p;, onl, (26b)
(0imi), = Pwjs (Oym), = pyy on I, T, (27a)
DPuj(8) = —pyy(s) on I'c = ZF (27b)

This possible state is an admissible equilibrium state (AE) if p on I, satisfies certain nonhomogeneous
loading conditions (Section 4) and the friction condition (19) on I'. = > I gv

p(FC) S ¢(p7ﬁa)7 @(paﬁv) :U(D(p7ﬁ7 ) (27C)
A possible kinematic state (PK) satisfies the conditions

gy = 1/2(ui; + uj,) (28a)

[u] = u,(s) —wu(s) =7v,,(s) on Ty (28b)

u=0 onl) (28¢)

This possible state is an admissible kinematic state (AK) if the displacements on I'. satisfy certain non-
homogeneous kinematic conditions and the impenetrability condition (14b) on I,

y() €X(B,); X(B,) = UX(B,) (28d)
The symmetric tensor E;;, and its inverse El connect stresses and strains by the relations
O-ij = Eijrsgrs; Eumais (29)

These equations together with the relations (27a)—(28c) provide the means for the solution of the dis-
placement problem.

Considering the possible states PE" = {p/(I'), /" (R2),0”(2),p"(I'.)} and PK' = {v/,¢,7'} we obtain
from the multiplication of Eq. (26a) by #' and using Gauss—Green’s theorem

/Q(Gﬁj, + /] )u;dQ = /r fnad AT+ (/ #uj#dr-‘r/ﬂ (O'Z.n)‘uﬂdf> /Q o, dQ
+/fj”u}d9:0 (30)
Q

Recalling Egs. (27a)—(27¢) and (28b) and combining opposite traction vectors on I'. we get the virtual work
relation between internal and external work
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/O-;;S:jd9+/ pZ\7"YiJ;LdF:/fN'u/dQ+/ p”-u/dF (31)
Q I Q e

Referring to Romano and Sacco (1985) we introduce on Q, I'e = > I’ 2‘, and I, inner product spaces and
their dual spaces:

(a) Y the space of int. loads f(Q) (") Y’ space including displacements u(€Q)
(b) 0Y the space of surface loads p(I'.) on I, (b’) Y’ space including surface displacements
u(l's) on I,

(c) H space of stress g;;(£2) (¢') H' space including strains g;(£2)

(d) 0H space of joint stresses p(I'.) including (d’) 0H' space including joint deformations y(I;)
reactions p,o on » F and V0 ON ZF

(e) Y Y @ Y space of force loads (e") Y =Y @0y space incl. displacements
p=1(Q).p(I)} i = {u(@),u(I))"

6] H = H @ OH space of internal forces (f") H =H ®0H' space incl. deformations
o = {o(Q),p(I)}" &= {e(Q),7(T)}"

The scalar product and the norm in H are defined by the bilinear form ¢(a,d")

(ald"),, = c(a,6") = /Elma,ja" dQ (32a)

1/2
ol =cto"a" = ( [ Ericinan) = ' (320)
The corresponding quantities in H' for kinematically possible &(u), e(u') are defined by the bilinear form

e(e(u),e(u')) = a(u,u’)
(6, = alu,ul) = / Eyptytl. 40 (33a)

1/2
Jo = atotst) = ([ Boniiian) = am) (33b)
Q
W, denotes the stress energy and W, the strain energy of the structure. The bilinear forms ¢(o,¢”) and
a(u,u’) are symmetric and positive definite which satisfy Schwarz’s inequalities
c(d”",6") - c(o,0) = c(d”",0);  a( W) a(u,u) = a( u). (34)

If {6”"} C PE and {«'} C PK there follows from Egs. (31)-(33b) and Schwarz’s inequality
/ o, dQ = (o, a(u)) = a(u(d"),u') < (c(o”,0") - a(u,u))"* = (4w - w))'/? (35)
Q

Since the admissible vectors p(s) and y(s) on AI; constitute convex cones ®(¢,s) and X(f,s) respec-
tively, the set of admissible functions p(-) € 0H, y(-) € 0H' constitute convex cones @(¢, ) C 0H and
X(B,-) C oH’, respectively. The integrals in Eq. (31) can be expressed by dual pairings in H, H and Y, Y,
respectively, and the work equality (31) can be written as

(0" &) + 0"V )ow = ")y + (0" ) oy (36a)

or

<O_// §/>H — <.pll7u/>? (36b)
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where

(6" €), = /Q are;dQs (")) oy = / p,, - Y, dl; ("), = /g - wdQ; ' u),, = / p’-udr
I I'e

4. The loading conditions and the stiffness of nonmonolithic structures

The loading conditions are usually expressed by prescribed loads p* on a part I'; of the external surface
I'., where u° is unspecified, and by prescribed nonzero displacements u* on I': C I'e, where p° is unspecified.
In this case, for a solution {u, o} with corresponding states {a,p(I'c)}, {u,¢,7}, where according to Egs.
(32a), (32b), (33a) and (33b) (o,&) = 2, = 2W,, the Eq. (36a) can be written as

20+ (. p)oy = (7 )y + (0" ) oy + 07,0 oy (37)

In contact problems the parts of surfaces, where loads p and displacements u are given, cannot generally be
separated. Thus in the indentation problem of a rigid stamp into an elastic layer the resultant force R and
the gradient of the displacement are simultaneously prescribed. In this case the loading can be expressed
in the spaces 0Y, Z and their duals 0Y’, Z' by (Fig. 2)

Bp=P; B:0Y - Z; Cu=U*; C:3Y =7 (38)

where Z and Z’' are the spaces generated by the scalar field of coordinates P, and U; of the functions
p(-) € 0Y and u(-) € 0Y’, respectively. B and C' and their adjoints B’ and C are bounded linear operators
with ranges R(B) and R(C'), respectively. Using the decomposition

p=p+p0" @)y =0; BY'=0; pedy (39)

u=u" +u"; W)y =0; Cu’=0; uecdy (40)

the set {u’} constitutes the nullspace N(C') of C’ and the set {p’} constitutes the null-space N(B) of B. The
set {p*} = 0Y; is N(B)’s orthogonal complement N(B)" in dY. Hence 0Y = dY; ® N(B) and analogously
dY' = dYL & N(C'). Conditions (39) and (40) represent for fixed P*, U* linear varieties M* and M’ in Y
and 0Y’, respectively, generated by the translated subspaces N(B) and N(C'). Because N(B) and N(C') are

(a) (b)

Fig. 2. Scheme of loadings. (a) Loads p* and displacements u* prescribed. (b) Only loads p* prescribed.
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closed and p* 1. N(B), u* L. N(C'), p* and u* represent the perpendiculars from the origin to the translated
N(B) and N(C') respectively. Hence, if Bp = P* and C'u = U* on I, then

M =p"+NB); |p’|l=min|pl;  M"=u"+N(C); |lu]| = min|ful| (41)

Definition. The loading conditions are said to be complementary if p*, u* and p°, u° on I'* satisfy

P ey =05 (P’ u’)yy =0 (42)
Complementarity requires that the subsets {p2} € N(C')" = CP® and {1} Cc N(B)" = B'U° of {p°} and
{u’}, respectively (Fig. 2), are orthogonal, {p} L {u}}.

Let u}, € N(C') be the component of «° orthogonal to N(B), and p2 € N(B) be the component of p°
orthogonal to N(C'), then there applies (Luenberger, 1968):

Lemma 1. If the loading conditions on I'* are complementary ((p*,u*),, =0, (p°,u"),, = 0) then:

(a)

'} = (B Py = 0% {uw}={C'U} = 0¥ (43)
where B* and C'* are pseudoinverse operators B* : Zg — 0Yy; C'* : Zi, — O0Ycn with inverses (B*)_l =B
and (CH)™' =
(b)

If N(B) #0, then {u%} = {B'U"} =R(B'); U’ € Z, (44a)
(0)

If N(C') #0 then {pl} = {CP’} = R(C); P’ € Z (44b)
(d) The work on T, is

(P, u) oy = @*’”g>ay + <P0cv“*>ay (44c¢)

(e) If N(C') and N(B) are nonempty then BC and C'B’ are null-operators

Proof. Since B:0Y; — Zg and C': 0¥+ — Z(. are one to one and onto, there is a one to one correspondence
between p* and P* and u* and U*, respectively. Therefore corresponding pseudoinverse operators
B*:Zp — 0Yy; c’ : Z(. — 0Ycn exist. Since 0Y and 0Y” are inner product spaces, any subspace 0Y; C 0Y can
be identified with its dual (0Y;) C0Y’ and vice versa. Because {p*} L {p’} € N(B) and {u'} L
{u’} € N(C') there follows

{p'} €0Y; = (0Ys) = N(B)" =R(B); {u'} €Y. =¥ =N(C)" =R(C) (45a)
The condition (p°,u"),, = 0 implies (p°,u})sy =0, (P2, u"),, = 0 and (P2, uy),, = 0. Hence
pe €N(C)" =R(C); upeN(B) =R(B), (45b)

from which follows (b)—(d): (p,u)sy = (p* +p°,u" +u’)sy = (P*,uy)oy + (P, u”). Therefore (P2, uy)qy =
(CP°,B'U"), = (BCP’, U°), = (P°,C'B'U"), = 0, from which follows (¢). O

The direction of the operators can be reversed for instance C' : Z’ — 0Y’ (Appendix A). If B or C’ are
identity operators from 0Y and 0Y’, their nullspaces are empty. On account of Lemma 1, the external work
on I, can be expressed in spaces Z, Z' by

(p)ey = (p", B'U) oy + (CP°,u")yy = (P, U°), + (P, U"), (46)

If complementarity holds, the work equation (37) for a solution at load {f/*,p*,u*} is
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2W + (p, V>aH = (/" ”>y + <P*vu(})3>ay + (P%, U*>ay (47a)
where u, and p are the components of «° and p°, orthogonal to any p® and any u°, respectively. It retains in
these more complicated cases the same form as in Eq. (37). Expressing (47a) in spaces H and Y and using
the notation m* = p*/||p*|| we get, if u* =0,

— —% = —% — o — —x12 %112 ® (2

(0,6)g = (" us)y = |p"||(m", ug)y;  (IP"[I° = [l7"1° + [lp*[I") (47b)
This detailed analysis of the loading conditions is unavoidable for the definition of the stiffness charac-
teristics of nonmonolithic structures. In these, the stiffness cannot be defined by flexibility or stiffness

matrices, but must be based on more general methods. Thus the stiffness for the point load P is defined
as the ratio of |P| to the load—displacement U, in the direction of P

D= [P|/U, = |P]*/(P-U)
In the general case with u* = 0 the load perpendicular p* € Y defines the stiffness by
= lp°ll/ (" )y = P71/ (7" m)y; ™ =P/ P (48a)

Using Eq. (47b), where the internal work depends on the friction p, § the stiffness can be expressed al-
ternatively by

(6’ ‘E’>_’
Dq(p, B) = <||p |>| i Dipp)=—TT5 (48b)
0,8)7 <m ,uB>y,
because ||p*|| = (7,&)y/(m*, up)y. The minimum norm |[p*|| expresses the load intensity. At given p* the

norm ||p*|| in expression (47b) can be replaced by the norm of any component or linear transformation of p*.

Proposition 2 (Multiplicity rule). Let us assume that in the initial state of the structure there are no eigen-
stresses oo and no initial gaps [r](-) on the interfaces. If the loading increases proportionally from zero and a
solution {u,a} corresponds to the load {f*,p*,u*}, then a solution {Au,lc} corresponds to the load
{Af*, Ap*, Au*}, where actual contact prevails on unchanged interfaces and the equilibrium remains stable,

if and only if 1 > 0.

Proof. The stable solutions comprises corresponding AE- and AK-states governed by linear relations and
conical restraints. The effect of sliding on the contact area can be overlooked because of geometrical
linearity with u = O(5L). Hence the “if” part is obvious. 4 < 0 is excluded because of the conical re-
straints. [

If the correspondence rule holds, stiffnesses defined by Eq. (48b) are independent of the load intensity A.

5. Characteristics of the solution according to nondissipative friction

In this case the friction angles on the interfaces are p = 0 and ¢ = . The scalar product of any pZV €
®;(0, ) and any v,, = y,n +v; € X;(f) is according to Eq. (22) and the inequalities (|t"|/|¢"|) cos(t",7) <
tan 8, and y;, > |y| tan B,

I ny ny/
ot = ) i - ) < s (€1 st ) i ) <0

Equality holds according to Eq. (24b) only for the corresponding vectors p,,, v,,
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P () - 7,,(s) =0 (50)
In the spaces 0H and O0H' the formulae (49) and (50) correspond to the dual pairings
@' Ner <0 (P()7( D)oy =0 (51)

From Egs. (49)—(51) there follows

Lemma 2.
(i) The friction cone ®;(0, 5) is the negative normal cone X; (B) of the cone X;(p) of admissible gap defor-
mations in AL'; : @,(0,8) = X} (B) C R*.
(it) The corresponding cone ®(0, f,-) C OH is the negative normal cone X*(f,-) of X(f,-) C OH'.
(iii) Corresponding nonzero vectors p(-) and y(-) are orthogonal generatrices of 0®(0, ) and X (f,-),
respectively (Correspondence rule 9).

Theorem 1. If the friction is nondissipative (¢ = p), the boundary conditions are complementary and a solution
exists, that corresponds to initial stress oy, initial gaps [r] and external load p*, this solution is unique.

Proof. (a) If at load {p*,u*} there would be two solutions {u' ¢'} and {u? 6%}, then their difference
{u* —u',6* — ¢'} would according to Eq. (38) satisfy the condition

(02 —d' e =)y + =Py = )ew = (P — Pl ? —u )y (52a)

where p/(I'e) = p + p"; ' = u* + u%; i = (1,2). Therefore, since p*> — p*!, u> —uw! =0 and (Pp* u%),, =
0, there applies because of complementarity

<O_2 _ 0'1,82 _ 81>H 4 <p2 —pl,"/2 _ V1>aﬁ — <p02 _pOI’uOZ _ u01>ay =0 (52b)

The first term on the left hand side equals a(u* — u',u? — u'), which is independent of gy, [] and is positive

definite. The second term is independent of ¢y and [r], because y* — y' = ([r] +7?) — ([r] +7'). Recalling
Eq. (51) and [r] +y" € X(B) with (p',[r] + ) =0 (i = 1,2), this leads to

(% [+ ) e + LI+ 7Dan) = (0 [+ 9 an + 07 111+ 7)) = 0 (53)

Hence the left hand side of Eq. (52b) is non-negative and vanishes only if all differences {v> — u!, 6> — o'}

vanish. On the contrary, noncomplementarity may imply several solutions. [J

5.1. Stiffness characteristics

Let u*, [r], 0o = 0 and let W/ (¢) denote the stress energies of the states {p*,o”,p"(I'.) € P(¢,-)}, then
W) (), where ¢ = p + f, includes also energies W;(0, ¢) of the nondissipative states {u,c},.

Lemma 3. The stress energy W' (¢) of a AE-state {p*,¢",p"(I'.)},,, corresponding to the load p* and the given
friction cone ®(¢, ), attains its minimum at a solution {u, o}w that exists if and only if this solution corre-
sponds to conical nondissipative friction ¢ = 5, p =0

W (@) = Wa(0,9); 7() € X(9,) = (¢, ") (54)

Proof.
(a) The “if” part is proved by assuming that the solution {u, ¢} corresponds to nondissipative friction
¢ = B. If complementarity holds, (»°,u’) = 0, the work equations for PE-states {0,¢” — g,p" — p} and
the solution {u, ¢} can, according to Egs. (34) and (35), be written
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(0" —0,8) =c(d" —0,0) = =(p" =, 7)oy = 0 (33)

because (p,7).y =0, (P”,7)sy <0. Recalling Schwarz’s inequality we obtain c(¢”,6¢") = ¢(0,0) from
which follows W,(0, ) < W' ().

(b) The “only if ”” statement is proved by assuming W,(¢) = min W (¢), where {¢} minimizes W (¢) and
simultaneously belongs to a solution of the contact problem at load p*. The original minimization prob-
lem is

find {a,p(I'.)} such that c(e,0) <c(6”,0”) with p(I'.) € ®(¢,-) and {¢"} € AE (56)
The weak formulation of Eq. (56) is (Ekeland and Temam, 1974)
find {o,p(I'.)} such that c(¢” — 6,6) =0 with p(I'.) € ®(o,-) (57a)

The solution {u,s} comprises a AK-state {u,¢,7}, where the constraints on y are unspecified. Because
¢(o,0") is symmetric and taking into account Egs. (35), (55) and (57a) we obtain

c(d"—o,0)=(c"—0,8)y == —p, ey =0; VP'(:) € P(p,-) COH (57b)

If we assume that interface I'y, has fixed parts, we can choose such an AE-state {p*,¢”(Q),p"(I';)} that
P'(I'.) = p(I'e), except on a measurable set {s} = dI' ?”, of a detachable I'.. Eq. (57b) can then be written

(' —p)-r<0 (58a)

Choosing p” = Ap, with A > 1 we get p- y <0 and with 0 < 2 < 1 we get p -y = 0. Hence for corresponding
vectors p and y there holds

p-y=0 pe®(p) (58b)
and for not corresponding p” and ¢’ there holds
Py <0 Vp'ed(p) (58¢)

The relations (58a)—(58c) can be satisfied only if every y(-) is restricted to a cone X(¢,:) = @* (¢, ), the
negative normal cone of @(¢,-). But this means that the friction is conically nondissipative. O

The lemma is a generalization of Castigliano’s principle of minimum stress energy and it connects
conical nondissipative friction directly with this principle.

If u*, [r], 6o = 0 the stiffness D(0, ) = ||p*||/(m", u)y corresponding to a solution {u,d}, ; at load p* can,
according to Egs. (48a) and (48b), be expressed with m* = p*/||p*|| alternatively by

MMF%%? (599)
or
D, (0, ) = % (59b)

Analogically we introduce the concepts of stiffness D;(f) of varied AK-states {u,¢,7'(Ic)}, and stiffness
D}(¢) of varied AE-states {¢”,p"(I'c)}, at the same load p*

D () = 22D (59¢)
<m*7 u>?
D) =120 (594)

20 ()
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The following extremum principles of stiffness are valid for nondissipative friction (p = 0) in the whole
range 0 < {f, ¢} < =/2 if the structure in the initial state is unstressed (o) = 0) and at the joints there are
no initial gaps ([r] = 0).

Theorem 2. If the structure is subjected to a load p* and the boundary conditions are complementary and with
respect to the displacements homogeneous, then the stiffness

i) = 2P

_ . —n2
(m*,u')y

(60a)

defined for all kinematically admissible states {u',¢',7'} g, where y'(I'.) € X(B,-) and (p*,u')y > 0, attains an
absolute minimum D(0, B) in the actual the actual nondissipative state {u, c}, , and the stiffness

Dllo) = gy (600)

defined for all admissible equilibrium states {p*,d",p"} ,, where p"(I'.) € ®(¢,), attains an absolute maxi-
mum D(0, @) in the actual nondissipative state {u,a}, ,. Thus

minD(B) = D(0, B) (61a)

maxD.(p) = D(0, ¢) (61b)

If ¢ = f there holds:
Dy (B)<D(0,p) <D[(B) (61c)

Proof. The lower bound statement follows immediately from Lemma 2. The upper bound statement follows
applying the work equation (34) to the solution {u, s}, , and an admissible {u', ¢’, 7} }, where 7,7 € X (B, ).
Recalling Eq. (58¢c) and V #' L p° on I';, we obtain

(o(u),e()y = alu,u) = (" + P, @)y — {p(), 7))y = |IP||(", )5 (62a)

(o(u), e(u))y = a(u,u) = [|p"|[{m", u)y — (p(u), 7(u))sy = IP"[|{m", )7 (62b)
according to Eq. (51). Dividing Eq. (62a) by (m*,#)y and Eq. (62b) by (", %)y, subtraction gives
a(u,u)/(m* ) <a(u,u')/(m*,&). From this and Schwarz’s inequality there follows (a(u,u)/(m",u))* <
(a(u, o)) (m*,i@))* < (a(u,u) - a(u',u'))/ (@, @)*. Dividing by a(u,u) and inserting W/(f) and W(0, ) we
obtain condition (61a). O

If p and u on I'* are defined in Z = R" by generalized loads and displacements P* = {P, ...PH}T,
={0... U,,}T, the solution satisfies, by Egs. (46) and (59a)—(59d), the work equation
(P U, = (o,6)y = 2W,(P") (63a)

According to the multiplicity rule every U; and every 0 /0P, are homogeneous first-degree functions of
the P, and W(P) is a homogeneous second-degree function of the P.. Hence

oW JoP, = Z(@ZW/aPaP) W= ZP oW JoP) = Z Z (O*W JOPOP,)P; (63b)

By varying P, we obtain from Eq. (63a) d;W = (d;0,¢), = dP.U; — (dip, y)oy- If p € 09(0,p,-) and p+
dip € @(0,8,-) and because ®(0,p,-) is convex, (d;p,7),,; <0. Therefore U” is a subgradient of W. If
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all 09(0, ,s) on I'. are smooth, then dp-y = 0 because of the correspondence rule. In this case there
holds

ow
a—PifUi (64a)
ou; oy,

=1 64
o (64b)

These equations are generalizations of Castigliano’s and Maxwell’s rules.
The stiffness vector A ={A,...A,}" € Z is defined by

A(p,p) = P'D'?/||P| (65a)

4] = D2 (65b)

A has the direction of the load P* in Z and defines the stiffness surface F (A, p, ), which encloses the origin
of A. If the friction is nondissipative, we obtain by substituting P, = ||P*||4,/||4]| into Eq. (63b)

1 2W(0,8) RW A4,
D~ 1P| Z Z oP,0P; D (66a)

This defines the stiffness surface F (4, p, §) for p = 0, that can be expressed by

F(4,0,p) = ZZ@P@P A, —1=0 (66b)
or
2w (4) =1 (66¢)
Because of Eq. (64a) we obtain
> 4U >0 (67b)

The outside normal ng(4) of F(4,0, ) has components n;(4) = (0OW(4)/04;)/||0W (4)/04;|,.
Therefore, where F(4) is smooth, we get the normality rule

ne = U/||U|| (68)

At a cornerpoint 4. of F (4,0, ) the U is contained in the normal cone of F(4.,0, f5).
Let 2W(4,) <1 and 2W(4,) <1 and since F(4,0,5) =2W(4) — 1, then if 0 < o < 1, we get

QW (ady + (1 — a)42))"* <a@W (4)"* + (1 — 2))(2W (4,)) /> < 1 (69)

because (2W(4))'* = a(4, A) can be regarded as a norm of 4 in a transformed Z space.
If the structure is monolithic, the terms 0> /0P, OP; are constant elements of a matrix [K"].

The expression
EM(4) =) ) Kisid;—1=0 (70)

represents then the stiffness ellipsoid EM of the monolithic structure with corresponding stiffness vectors
A(M) and stiffnesses D(M). The set of loads {F}, that induces in the nonmonolithic structure the states
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of stress and strain of the monolithic structure, constitutes the cone Ex(0, ¢) of the monolithic kern of
the structure (Fig. 6). Within Ey (0, ¢) complete geometrical contact (y = 0) and maximum dynamic con-
tact (p(I'c) € ®°(¢,-)) prevail on every detachable surface. Ey(0, @) is convex, because if P! induces
pL(Te) € ®°(¢,-) and P? induces pi(I'.) € ®°(¢p,-) then p} + p? € ®°(¢,-), where @°(¢, ) is the interior of
®(¢@,-) that is convex.

From Theorem 1 and formulae (68)—(70) there follows:

Proposition 3.
(1) The stiffness surface F(4,0, B) is uniquely determined by f§ and is convex
(i) The work > A;U; is positive, > A;U; > 0
(itl) The displacement U is contained in the normal cone {nr} of the stiffness surface F(4,0, )
(iv) F (4,0, B) is enclosed in the stiffness ellipsoid EM of the corresponding monolithic structure. It coincides
with the stiffness ellipsoid EM where the load is within the convex cone of the elastic kern E;(0, ).

Proposition 4. If the assemblage is detachable, the stiffness surface F(A,0, ) approaches asymptotically a
generatrix OE(0, ) of the cone of stability E(0, 8) of the corresponding rigid body assemblage in the neigh-
bourhood of their common origin 0. If A — 0, the normal nr of F(A4,0, 5) approaches the normal ng of OE(0, )
and U approaches 0F, where £ = E*(0, 5), the normal cone of E(0, ), represents the cone of detachment.

Proof. If the interfaces I',, separate the structure into detachable parts, a load P that coincides with a
generatrix OE of the cone E(0, ff) induces an unbounded displacement U with zero stiffness 4 = 0. Ac-
cording to Egs. (67b) > 4,U; = |P*|/|4| > 0. This is possible because of the collinearity of ng and U only
if U— oo when 4 — 0. But unboundedness of U implies that 4 — 0E(0,) and U L 0E(0,p) in
the neighbourhood of 6. On 3E(0, f)P¢ L U® € 05(f), therefore ny = U°/||U°|| = ne(0) (see Part II, Sec-
tion 4). O

5.2. Extent of contact and limit state of free contact
If we have a detachable interface I',, with friction, we can distinguish three regions:

(a) The stick-region I', where p(I'y) € ®° (¢, T'y) and y(I'y) = 0; proper sticking.
(b) The slip-region I's where nonzero y(I's) € 0X(f, I's) and corresponds to nonzero p(I's) € 0@ (¢, ;).
(c) The detachment region I'y where nonzero y(I'y) € X°(, I'y) corresponds to p(I'g) = 0.

If, at given load p*, we make a very thin cut I'; from outside that induces nondissipative friction along an
internal surface where originally the normal stress ¢ > 0, this cut will generate a detachment region I'y with
a stress discontinuity at the tip of I'y. If further increase of I'} induces compressive stresses ¢ < 0, this may
cause contact sliding in a region Al'y = I'; with a stress discontinuity at the tip 0I'y of the cut. If there is a
border OI'y for the not-cut region I',, across which the joint traction p changes continuously from
p € 0P(g,-) to the interior @°(¢, -) of the friction cone and the gap deformation 7y from outside approaches
zero, this border 0I" g defines the limit state of unconstrained contact. The position of the moving boundary
or ﬁ may be determined by parameters 7 . ..r, such that I', increases monotonically with ;.

Proposition 5. If at given load p* the friction in the cut interface I'. is nondissipative and the thickness t of the
cut is minute, there holds:

(a) The stiffness D(0, @, r) increases monotonously with the not-cut area I, (Fig. 3).
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Fig. 3. Beam on Winkler-foundation. Dependence of stiffnesses D, D), and D on contact length /i, i and [, respectively.

(b) In the limit state of unrestrained contact the stiffness attains a maximum D°(0, B) at values r° within a
neighbourhood ATy of I where p(AT'y) € @°(0, @)

oD o*D
<_> :0, ( ) :0, Vr,-,rjEAFk
or; ATy Or;0r; ATy

(¢) The generalized displacements U; attain extreme values in the limit state. This implies

ou;
or; ATy

(71a)

(71b)

Proof. (a) Because at given load p* any increase of I', relaxes the restraints on the state of stress
{a(Q),p(I'.)}, this can only increase the stiffness or keep it unchanged, according to the maximum prin-
ciple of Theorem 2, from which (a) follows. Because on OI'y a continuous transition occurs from
pi(I) € 30(0, ) to p(I') € °(0, @), there is within oI, a region ATy, where an additional cut does not
affect the state of stress and strain. This means that the state of stress and strain and the stiffness, within an
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additional cut in region Al'y, remains unchanged. From this follows the disappearance of the first and
second variations of D(ry,...,r,) on r; € A, and so condition (b) and also the independence of any U; on
r; € Al'y, which gives condition (c). O

In the case tang =0, or y,(I'1) = 0, a cut of finite thickness ¢ reduces I's to zero and the region ATy
shrinks to a narrow band AI'’ containing 0I'°. At the limit boundary oI the stiffness D(0, ¢, 7) attains an
inflexion point with respect to r; and the generalized displacements U;(r) attain extreme values (Fig. 3).

Example 1. An elastic beam (i) loaded by a point load P and resting on a Winkler-foundation (v). The
elementary calculations are based on the correspondence rule

V==, >0; py=00nTyg v,=0 wu=u,#0; p,=—cu,onl=I (72a)
with the loading condition on I'* = L (L total length of beam) and the differential equations

PZ/pM;mFFMM Uy + 4B, = 0; = (c/4ET)* (72b)
I'x

Applying Proposition 5 to the extremum principles of Theorem 2 we obtain according to Fig. 3.
D/(1") = 1.704¢/p < D(°) = 1.838¢/f < D.(1") = 1.944¢/p (72¢)

This elementary example shows, that with very simple approximations, the extrema of D and D/ provide
acceptable bounds for the stiffness of the limit state (and for this only).

Example 2. Smooth (¢ = 0) eccentrically loaded rigid beam on halfplane. With notations according to
Fig. 4 and ¢ = e —d/2+d'/2 the inclination of the beam 6 and the pressure p(x) on the contact area
I'y = d' are (Milne-Thomson, 1960; Heinisuo, 1983):

o210 py (72d)

pn(d’)?

P14+ éx/(d')?)
) @y - 72

N
T

ro
| o
oP

di2 | dn2 | L

dr2 dr2

05+

s

|
\
\
|
!
\
\
J

, ; .
0,05 01 015 02 - o=did

0 L L

Fig. 4. Indentation of elastic half-plane by a rigid rectangular stamp. Relative inclination ratio 0/P = (2.66 — 3(1 — «))/o? at eccen-
tricity e = 0.44d versus contact area ratio o = d’/d.
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Hence, 0 attains a maximum at d” = 2(d — 2e)

_ (I+x)P
emax - W—Z@) (72f)

that corresponds to the limit state of free contact with p(—d”/2) = 0.

6. Stiffness characteristics of the solution according to dissipative friction (DFA)

In the general case we have contact sliding with friction angles p, f > 0. The stiffness D(p, ff) of the
structure depends entirely on the loading history (Fig. 5b). The uniqueness of the DFA-solution can be
established only in special cases (Part II, Appendix B).

If u*, [r], 09 =0, let {u, 5} ,4 be a solution corresponding to a proportional loading and friction angles
0, . The gap work is, recalling Eq. (24b)

2, en = (ol [7/(tan @, — tan §,))z,, = 0 (73)

The stiffness D(p, f) can then be expressed, using Egs. (26a), (26b), (48a) and (48b), either by the corre-
sponding AK-state {u, ¢, y}pﬁ as D.(p, f) with W,(p, f) and m* = p*/||p*||, or by the corresponding AE-state
{p,0(Q),p(I'c)}, s as Ds(p, B) with W, (p, f)

2W.(p, B) + (p(u), 7);
Do) = 20 B+ ).y (74a)
(m*, u)
2
Dulp.f) = [l (74b)
2W,(p, B) + (P, 7(0))on
(a) D°=D (P, 0, 0) Dy=D(P,p,0) — -
DISSIPATIVE FRICTION NONDISSIPATIVE FRICTION D,=D(P.oy) D,=D(P,0,0)— -
¢=p; p=0 ¢=p;p=0

Fig. 5. Elastic frame with frictional bearing. (a) Dependence of stiffness ratio D(0, ¢)/D(0,0) (GFA-solution) and bounds of
D(¢,0)/D(0,0) (DFA-solutions) on the coefficient of friction tan ¢. (b) Load P versus load-displacement u,.
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Because these stiffnesses cannot in general be uniquely determined, we can only give estimates of their upper
and lower bounds. The set {u, ¢, 7}, ; can be considered as a nondissipative varied AK-state {«/,¢',7'};, and
{p(I'e),a(Q),p(I'c)}, s as a nondissipative varied AE-state {p*, d"(2),p"(I'c)},. We recall the stiffness ex-
pressions (60a) and (60b) where D/ (f) is expressed by {«',¢,7'}; and D}(f) by {p*,0"(Q),p"(I'c)},- Egs.
(74a) and (74b) and the extremum principles of stiffness (Egs. (61a) and (61b)) provide then the relations

minD(p. ) > inf D/(f) = D(0.§)

, 75
maxD(p, ¢ — p) < sup Dj() = D(0, ¢) 73)
z o ()

Using the inequalities (75) in turn by varying ¢, p, f we get the following proposition.

Proposition 6. The following sequence of stiffnesses hold for 0 < p, p<m/2

D(0,0) < { ‘;f;‘ggg 8)) } <D(0,p) < { ‘;?;‘DD((Z g)) } <D(0,p + ) <D(M) (76a)

These inequalities express that the stiffness at load p* increases monotonically with p and f§ towards the
stiffness D(M) of the monolithic structure. At constant total friction angle ¢ = p + f# and load p* there
holds min D(¢,0) = infy; D(¢ — 5, f) < D(¢ — B, ) < supDZ(¢) = D(0, ¢). But considering (ZI/VE’(O))I/2 as
a norm of «' and using Korn’s and Poincaré’s inequalities, we can write

min D(¢,0) = inf W;(O)+(p(bé),u> > inf VK(O);: su {m”, u')
ol <m*’u/> ' <m* u’> y

3

) 7 =D,(¢,0) (76b)

with the restraints of Theorem 2 supplemented by the condition |t(¢)| < |o(/)| tan ¢. In this way we obtain
wellposed upper and lower bounds for any stiffness D(¢ — f, f§)

Da(@ao) <D(§07ﬁ7ﬁ) <D(07(/)) (760)

These bounds are completely independent of the gap work (p, y) at the joints but determination of the lower
bound D((p, 0) is in many cases cumbersome. In these cases we take into consideration also the gap work
(p,7) that provide still closer bounds for D(p, ). Let {u, o}, , be a DFA solution for friction angles p,  and
{u, 6"}, be the GFA-solution for friction angles 0, § and {u',a'}, ,, ; be the GFA-solution for friction
angles 0, p + f. Then, if stable equilibrium at load p* is maintained at any friction angle ¢ > f§, we obtain
the following bounds for the actual (|g|, |y,|)sy corresponding to friction angles p, 8

(o'l niDon < ol [n)anr < (Ua®L 197 Do (77a)

Indeed, the average contact sliding |y,| is greatest in state {u®, 6®}, where resistance to sliding is the least,
and which corresponds to the smallest total friction angle ¢’ = . The highest resistance occurs in state
{u',6'} with ¢" = p + B. According to the premisses, the average |s| on I'y, at the same load p* depends
mainly on 7, and is rather independent of ¢. Therefore if ¢ > f, with (p, y),, = (|al, |7|(tan ¢, —tan f,)),,
we conclude

(I [77](tan @, — tan By )ey = (p.7)ey = (l'], 1t (tan @, — tan Br))ey, >0 (77b)

where for v = ¢, f and i = b, f we used the notation tanv, = tanvcos(Vz,7!). We label the dual pairings
with ¢, 9" and ¢°, y* as (p',y"), ; and (p°,7"), 4, respectively.

A lower bound at given p* for inf D(p, ) expressed by a state {«/, ¢',7'}, is obtained using Egs. (74a) and
(75) and D(p, B) = ||p*||/(m", u)y
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min D(p, ) = inf <2W£(p,[3) + yl)éH) > inf D[(f) + min D*(p, f) inf (@/,V%H) (78a)

— 2 2
(m*,u)y 17"

where according to Eq. (77b) inf(p, 7)., = (p',7"),; = (o', [y{|(tan ¢,; — tan B)), with ¢,r = p + f. In-
troducing the notation B(¢, f) = ||p*||"/(p",7"),; and recalling the minimum principle of Theorem 2 we
obtain the inequality

min D(p, ) = D(0, B) + (min D(p, §))*/B(¢. ) (78b)
The smallest root of the above equality gives a lower bound D(p, ) for min D(p, f3).

2D(0, )
1+ (1—4D(0,8)/B(e., B))"?

For greater friction angles p, [ better approximations of the lower bound are obtained using work
equations for the solutions {u, 0}, and {u', 0"}, ,

(" a)y = (o, + (P Nes B 07 = (0" &)y + (0" Vs (P8 )y = (0, 6)y (79a)
From Schwarz’s inequality, with (o, a(u,u), (o',e) = a(u',u), there follows a(u', u)2 = ((p", u)5—

&) =
<Pf,WaH)2<a(uf,uf) a(u,) = (5 i)y (7 i)y — p.7)y). Hence  K(p',u) = (', i)y)* — (200, 2)an
+(*,w)y) (P, u)y (f) *> (0,7 + (05, 7)oy)” < 0. The greatest (p*, &)y corresponds to the greatest root
of the equation K(p*,u

min D(p, f) = Di(p, B) = (78¢)

P 12
sup(p", u)y < (p*,u <1+2 o <1+<p*—p;’>a”> (79b)
<p U >?
This inequality is satisfied if (', 7)., < 2(p",7"),5 < (P, V)ew + (P',7"),4)- Hence
12
(", ')y (') 0 Ay
U = 1+4,*7, 1+— 79¢
e =5 ey \ ey e

Inserting (p', "), ; and B(e, B) into Eq. (79¢) we obtain finally with ¢ = p + 8
2D(0, ¢)
1+4D(0,9)/B(o, f) + (1+4D(0,9)/B(p, )"

An upper bound for max D(p, f§) is established using the GFA-solution {u', '}, ,- From expressions (74b)
and (77b) there follows with ¢ = p + B

minD(p, ﬂ) > Dy = (79(1)

[l [zl
max D(p, f) < - - = 80a
v F) inf 2W(p, ¢ — p) +inf {p, 0oy 2W(0,0) + {717, (80

because inf (p,7), ;= (p',7'), 4 Inserting D(0, ) and B(¢, ) we obtain

max D(p, f) <Ds = ; +D(o((()p)%(<p 5 (80b)

These estimates depend only on the solu tion {u', ¢ }o,, and satisfy the limit values D; = D = D(0,0) in
frictionless case and D; = D;; = D(0, ¢) if no dissipative work occurs.
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If instead of the exact values D(0, ﬁ) and D(0, ¢) only their approximations D”(0, ¢) and D/(0, ¢) and
respective max(p',y > 5 and max(p', )"’ o Of Eq. (77b) are available then, recalling Egs. (76¢), (79d) and
(80b), the following estlmates apply

204(0.8)
1+(1-4D(0.8) /B2 (9.)) /2
- 20,0, ¢)
max D,(¢p,0 <D(p,p) < £ 8la
) DS TD00.0)/80.9) Sl
14+4D%(0,0) /B (0.8)+(144D(0,0)/BY (9.8))'/?
where
D.(,0) = inf, 27, (¢,0)/(m, i)*); |1(u')| < |o ()| tan ¢
Bi(¢,p) = Lp|/<|a( SINFA (tanq)q tan f,)) oy (81b)
Bi(o, B) = |p*[*(|o""], pi(c”)|(tan @,» — tan B,1))y

Every D(p, f5) defines the corresponding stiffness surface F(4, p, f). This coincides with the stiffness ellipsoid
EM when P € Ei(p, §), the cone of the monolithic core (Fig. 6).

Proposition 7. If the cone of the monolithic core E;(p, ) exists, this cone is uniquely determined by the total
Sfriction angle @, = (p + B); : Ex(p; B) = Ex(y); Ex(¢4,0) = E(0, ¢y).

SOLUTION ———  STIFFNESS ELLIPSE EM
- GFA F(A O, ()
" GFA — — - F(A,0,0)

o DFA — - — F(d.0.0)
RANGE weezeer. A (@, O)

Fig. 6. Portal frame with inclined frictional bearings. The stiffness vector 4 has a region (shaded) of indeterminateness outside the cone
Ey, that fades away as 4 approaches point K € 0F.
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Proof. Let the load p* induce a state {u, o} of nondissipative friction (p = 0, ¢, = f8), where at almost all
joints I',, complete contact with p(I',,) € @°(0, @y, -) prevails and in remaining joints I';; transitions of the
p(T;) from 0®(0, @y, -) to @°(0, @y, -) at the edges rmax occur corresponding to unrestrained contact. That
implies according to Proposition 5

dD\  [«0D(0,¢) O\
(5). - (=05) <82>

This means that further increase of ¢ > ¢, does not affect D(0, ¢) = D(0, ¢, ) and 4(0, ¢, ) constitutes a
generatrix OEy of cone E(¢). Thus OE is uniquely determined, because the solution of the nondissipative
problem, if it exists, is unique. It coincides with that of the monolithic structure because y(I'y) =0
everywhere if p* € E(¢). The generatrix 0Fy only depends on ¢, = p, + f, and is independent of the ratio

pi/ By (Fig. 5). O

Outside Ex(¢) the surfaces F (4, p, f) are inside F(4,0, p + ). Castigliano’s and Maxwell’s rules (Egs.
(64a,b)) are not valid outside Ex(¢p), but Proposition 5, concerning the stationarity of stiffness and gen-
eralized displacements with respect to the free boundaries of contact, remain valid because in the limit state
there is a border oI within which p(I'.) — @°(¢,, ). Propositions 3 and 4 remain valid with some mod-
ifications, because (p,y),y = 0: F(4, p, f§) is not necessarily convex and the relations U = Ang on F (4,0, )
and (P,U) =0 on 0E(0, f§) are to be replaced by (4,U) > 0 on F(4, p, ) and (P, U) > 0 on OE(p, f§), re-
spectively.

Example 3. An angle-shaped elastic frame with a frictional bearing is loaded vertically by P (Fig. 5). The
stiffness D = P/u,, at different friction angles are

V2 - 3EI
0 =0 DO.0) =705
p=0: D(0,¢)= (1 +¢)D(0,0)

B (1 —tan ¢)* 4 ¢(1 + tan @)*
(1+¢) [(1 ~tang)’ +c(1 + tan ¢)2]D(o, 0)
[(1 —tan @) 4 ¢(1 + tan )]

e B (1+¢)D(0,0) = B
=0 D((P’O)i(1—tanq0)+c(1+tanqo)’ D.(#,0) =

@ = ¢ DWM)=(1+¢)’D(0,0)/4c; tang, = 0.933

(83)

where ¢ = 3EJ/2a’EA = 1/28, EA is the compressive and EJ the bending stiffness of the struts. With
B(¢,0) =D(0,0)/((1 —¢)/(1 + ¢) — tan ¢) tan ¢, we obtain according to Egs. (78c), (79d) and (80b) upper
and lower bounds for D(0, ¢).

Example 4. A portal frame with a rigid beam, elastic studs and frictional bearings is loaded by P, = Rsina,
P, = Rcosa (Fig. 6). If ¢ = 0, the stiffness D(0,0) = R/Ur = 6EI/(1 + ¢)a® is independent of «. For small
values of o the stiffness surface F(4) coincides with the stiffness ellipse EM with major axes (D(0,0))"* and
((1 4 1/¢)D(0,0))"?, where ¢ = 9EI/EAq?

(4 c(4)’
EM = 00.00 T T+ op0,0) ! (84)
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The stiffness surfaces F(4) corresponding to contact sliding are determined by A, = sinay/D and 4, =
cos a/D. The stiffness D = R/Ug depends on p, f and «
D(0,0)

=¢; p=0; D0,¢), = - :
F=oiv ©.9) 1 — (cos? o — sin® o — (cos o — sin ) tan O(1 + tan 0)) /(1 + ¢)

(85a)

- D(0,0)
1 —cosa(cosa —sina)(l +tan0)/(1 +c)

where 0 = ¢ — n/4. The stiffness surfaces F (4,0, ¢) and F(4, ¢,0) are enclosed by EM and by the cone
E(R) of stability. They coincide with EM within the cone of the monolithic core E.

B=0; p=¢; D(p,0),

(85b)

The indeterminateness of the stiffness vector 4(¢,0) outside the cone Ex(¢) and its disappearance at the
limit of transition K = 0Fy N EM are clearly perceptible on Figs. 5 and 6.

There are many analogies between the stiffness of elastic nonmonolithic structures and the stability of
rigid body assemblages. If parts of the structures are detachable, the stable loads P* span the interior of the
cone of stability E(p, f#), which is convex and contains the origin. In analogy with the stiffness sequence
(76a) for the cone of stability £(p, f§), the following inclusions hold (Parland, 1995):

E(0,0) ¢ { 1:111?1)1(5((? 8)) } C E(0,p) C { f;jr’l‘f((g g)) } C E(0,p+ ) C E(n/2) (36)
where for E(f,0) and E(p, §) only some bounds can be determined. In this case every surface F (4,0, f§) is
contained in the corresponding cone of stability E(0, f), and the same applies to F (4, p, ) and E(p, ff),
where OE(p, f§) constitutes an osculating cone of F(4, p, §) at the origin. The indeterminateness of the cone
of stability expressed by the set of neutral equilibrium E,(p, ) increases with the dissipativity p.

0= E4(0,0) = En(0,p + B) C En(p,B) C En(p + B,0) (87a)
To this corresponds the extent of indeterminateness ND of the stiffnesses D(p, ) expressed by the sequence
of inequalities

0 = ND(0,0) = ND(0, p + ) < ND(p, ) < ND(p + 4,0) (87b)

because at given ¢ = p + f§ the range of indefiniteness increases with tan ¢, — tan f8,.

7. Summary and conclusions

The range of Coulomb type friction angles ¢, that in nonmonolithic structures warrants a unique
solution, is restricted to the singles ¢ = 0 and ¢ = n/2. We extend this range to the whole range [0, /2]
introducing a nondissipative geometric friction. Assuming interfaces with conforming piecewise smooth
periodical asperities with maximum inclination tan 8, the gap deformation vector y(-) = {y,,7,}" and the
stressvector p(-) = {o,t}" at the interface satisfy at contact sliding (Fig. 1) the impenetrability and friction
conditions

7a() = [n(-)[ tan B, (88a)
[t()I<lo(-)[tanB;  o(-) <O (88b)

Eqgs. (88a) and (88b) restrict y(-) and p(-) to mutually orthogonal convex cones X(f,-) and &(0,f,-),
respectively, where admissible y'(-), p”(-) and corresponding y(-), p(-) satisfy

<P”7V/>aH goa <p7 V>a;—1 = 07 p”7p € @(07ﬁ7 )a ’V/7V € X(ﬁv ) (89)
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The GFA solution {o, u}oﬁ corresponding to a given loading is unique, provided certain complementary
conditions (Eq. (42)) are satisfied. If initial gaps [r] and prestress g, do not occur, all rules of the monolithic
structure concerning energies and their derivatives (Eqgs. (64a) and (64b)) remain valid.

If the friction is dissipative with friction angle ¢ = p + f, where p stands for the dissipative Coulomb
friction (Fig. 1), there holds

7a() = ()| tan B (90a)

rO<lo()[tang; ¢ > p (90b)

p(+) and y(-) are contained in non-orthogonal convex cones X (f3, -) and ®(p, f3, -), respectively. The solution
at given load p* is not unique.

The essence of the given loading is expressed by the load perpendicular p* with minimum norm ||p*||. The
stiffness of the structure D(p, §) corresponding to ¢ = p + f is defined as the ratio of ||p*|| to the load—
displacement u,, in direction of p*:

(a) If the friction is nondissipative (p = 0) or || < |o|tan ¢ (y, = 0) and [r], 6o = 0, the stiffness D(0, 5)
can, using Clapeyron’s equation, be expressed approximately either by an AK (admissible kinematic) state
{u/,¢,y'} with strain energy W/(f) as D.(f}) = 2W;gﬁ)/(ﬁ1*, u')?, or by an AE (admissible equilibrium) state
{0”,p"} with stress energy W' (¢) as D’ (¢) = ||p*||"/2W/ (¢). Now f = ¢ and Theorem 2 provides bounds
for the actual stiffness D(0, ) at load p*

DL(B) <D(0, ) <D,(B) (91a)

(b) If the friction is dissipative and [r], oo = 0, only at proportional loading a consistent definition of
stiffness is possible by stress and strain energies and the positive dissipative work (p,7),, ; at the joints. In
this case the stiffness D(p, f) can be expressed alternatively by

Dip. ) = P e (91b)
’ oY
12

Do) Pl ©1c)

20 (0) + W' ) en

D(p, ) can therefore be considered either as greater than a D/(f) corresponding to a varied AK state
{u/,€,7'}, or as smaller than a D;(¢) corresponding to a varied AE state {¢”Q),p"(I'c)}, (Egs. (61a)~(61c)).
Thus, using the unique values of the stiffness D(0, f) for nondissipative friction, we obtain (Eqgs. (76a)—
(76¢)) in the general case the sequence

mlnD(qD - ﬁaﬁ)

Using the contact sliding y, corresponding to nondissipative friction, closer bounds for the infima and
suprema of the stiffness can be determined (Eq. (81a,b), Fig. 5).

If the boundaries of the contact region at given load are not fixed, the actual boundaries correspond to
stationary values of the stiffness and the concerned displacements (Figs. 3 and 4). If the load is expressed by
n forces P, the stiffness vector {4(p, )} = {P}D'?(p, B)/|P| determines the stiffness surface F (4, — f, )
that is contained in the unique stiffness surface F (4,0, ¢). This is in turn contained in the stiffness ellipsoid
EM of the corresponding monolithic structure. F (4, ¢ — f, §) and F(4,0, ¢) coincide with EM within the
cone Ey () of the monolithic core (Fig. 6). This cone with critical ¢, is uniquely determined by a GFA
solution. If a structure forms an assemblage of detachable parts, the stiffness surface F(4, p, ff) is contained
in the corresponding rigid body cone of stability E(p, ), that constitutes an osculating cone of F (4, p, f§) at

D(0.0) < Dy(¢.0) < {m“”(“" B } < D(0,¢) < D(n/2) (92)
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their common apex 6. In this case to relation (76a) concerning D(p, ) and the range of its indetermi-
nateness there corresponds a quite analogous relation (86) for E(p, f).
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Appendix A. Exchange of boundary conditions of the indentation problem of an elastic strip loaded by a rigid
wedge

Loading surface I'e; |x| <b/2; y = 0; p = {0,p,} s u = {ug,u,} s p(x,0) € 3Y; u(x,0) € 0Y'; Z = {Py, Py };
7' = {U;,U,}; ¢ = 0 (Fig. 7). Loading conditions p(x,0) = p* + p% u(x,0) = u* + u°.
Nonlinear problem (Fig. 7a)

Initial gap [r], = 7 = |x|U; > 0; [r], = 0 Rigid wedge. One degree of freedom: translation U} in direction

Y
Loading conditions:

/ pydx = Pf; uf = |x|U; (A.1a)
Operators B:0Y — Z; C': Z/ — 0Y’
Prescribed:
Bp = / pdx=P €Z (A.2a)
Ie
/pﬁdx =0 (A.3a)
T
C'U—{ 0 }E@Y’ (A.4a)
x|U3 '

Fig. 7. Scheme of loads and displacements on the loaded surface I'*. (a) Generalized loads P}, U; prescribed. (b) P and Py = rP}
prescribed.
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Complementarity requires:
Y. C N(B); Zy C N(C') (Fig. 2);

[wrwyan=o [y =0

Hence
ﬁ{éh}”*{um—%@@} (A.5)
{ob=10 w15} (A6)
P= oyt | (ATa)

{Z}: {1(/)1) x| —Ob/4H1€§}+{1§)g} (A.8a)

Semilinear problem (Fig. 7b)
Initial gap [r], = 0 Wedge split into two rigid beams connected by a hinge. Two degrees of freedom:
translation U and rotation UY
Loading conditions:

Ie Ie
Operators B:0Y — Z
Prescribed:
0 1 p P
Bp= (= p (€2 A2b
? /johd{w} {g} b (A2b)
0 172 } { Jpldx=0 }
(N S A3b
Lio ud{ﬁ Jplx|dx =0 (A.3b)
¢=0 (A.4b)

Complementarity requires:

u'=0; U’ € Zy; p* €0Yy; p° € N(B);

[ e —o

Hence

=g (- mn s (- 1)m) | (A.5b)

{$}=[?£J{ﬂ%}+{§} (A.6b)
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s = {(1) M { —U&OS} (A.Tb)

{i;}:;a—f{b/aowﬂ 4|x|/(l))—1]{}€;:}+{1?‘y)} (A.8b)

In both cases (p2,u) =0, (p°,ul) = 0 as well as (p°,u’) = 0.
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